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ctmm-package Continuous-time movement modeling

Description

Functions for identifying, fitting, and applying continuous-space, continuous-time stochastic-process
movement models to animal tracking data. The package is described in Calabrese & Fleming
(2016) <doi:10.1111/2041-210X.12559> and its models and methods are based on those intro-
duced and detailed in Fleming & Calabrese et al (2014) <doi:10.1086/675504>, Fleming et al (2014)
<doi:10.1111/2041-210X.12176>, Fleming et al (2015) <doi:10.1103/PhysRevE.91.032107>, Flem-
ing et al (2015) <doi:10.1890/14-2010.1>, Fleming et al (2016) <doi:10.1890/15-1607>, Péron &
Fleming et al (2016) <doi:10.1186/s40462-016-0084-7>, Fleming & Calabrese (2017) <doi:10.1111/2041-
210X.12673>, Péron et al (2017) <doi:10.1002/ecm.1260>, Fleming et al (2017) <doi:10.1016/j.ecoinf.2017.04.008>,
Fleming et al (2018) <doi:10.1002/eap.1704>, Winner & Noonan et al (2018) <doi:10.1111/2041-
210X.13027>, Fleming et al (2019) <doi:10.1111/2041-210X.13270>, Noonan & Fleming et al
(2019) <doi:10.1186/s40462-019-0177-1>, Fleming et al (2020) <doi:10.1101/2020.06.12.130195>,
Noonan et al (2021) <doi:10.1111/2041-210X.13597>, Fleming et al (2022) <doi:10.1111/2041-
210X.13815>, Silva et al (2022) <doi:10.1111/2041-210X.13786>, and Alston & Fleming et al
(2023) <doi:10.1111/2041-210X.14025>.
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Description

These functions calculate individual and population-level autocorrelated kernel density home-range
estimates from telemetry data and a corresponding continuous-time movement models.

Usage

akde(data,CTMM,VMM=NULL,R=list(),SP=NULL,SP.in=TRUE,variable="utilization",debias=TRUE,
weights=FALSE,smooth=TRUE,error=0.001,res=10,grid=NULL,...)

pkde(data,UD,kernel="individual",weights=FALSE,ref="Gaussian",...)

Arguments

data 2D timeseries telemetry data represented as a telemetry object or list of ob-
jects.

CTMM A ctmm movement model from the output of ctmm.fit or list of objects.
VMM An optional vertical ctmm object for 3D home-range calculation.
R A named list of raster covariates if CTMM contains an RSF model.
SP SpatialPolygonsDataFrame object for enforcing hard boundaries.
SP.in Locations are assumed to be inside the SP polygons if SP.in=TRUE and outside

of SP if SP.in=FALSE.
variable Not yet supported.
debias Debias the distribution for area estimation (AKDEc).
smooth "Smooth" out errors from the data.
weights Optimally weight the data to account for sampling bias (See bandwidth for akde

details).
error Target probability error.
res Number of grid points along each axis, relative to the bandwidth.
grid Optional grid specification via raster, UD, or list of arguments (See ‘Details’

below).
... Arguments passed to akde, bandwidth, and mean.ctmm.
UD A list of individual UD objects corresponding to data.
kernel Bandwidths are proportional to the individual covariances if kernel="individual"

or to the population covariance if kernel="population".
ref Include non-Gaussian overlap corrections if ref="AKDE" and weights=TRUE.

Details

For weighted AKDE, please note additional ... arguments passed to bandwidth, which can have
a large impact on computation time in certain cases.

When feeding in lists of telemetry and ctmm objects, all UDs will be calculated on the same grid.
These UDs can be averaged with the mean.UD command.

If a UD or raster object is supplied in the grid argument, then the estimate will be calculated on
the same grid. Alternatively, a list of grid arguments can be supplied, with any of the following
components:
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r A list with vectors x and y that define the grid-cell midpoints.

dr A vector setting the x and y cell widths in meters. Equivalent to res for raster objects.

dr.fn A function for determining the joint cell size, dr, from individual cell sizes. Examples in-
clude min, median, mean, max, with min being the default, but also the most memory intensive.
If you run out of RAM with multiple individuals, then consider a coarser resolution with
median, mean, or max.

extent The x-y extent of the grid cells, formatted as from the output of extent.

align.to.origin Logical value indicating that cell midpoint locations are aligned to be an integer
number of dr steps from the projection origin.

Value

Returns a UD object: a list with the sampled grid line locations r$x and r$y, the extent of each grid
cell dr, the probability density and cumulative distribution functions evaluated on the sampled grid
locations PDF & CDF, the optimal bandwidth matrix H, and the effective sample size of the data in
DOF.H.

Note

In the case of coarse grids, the value of PDF in a grid cell corresponds to the average probability
density over the entire rectangular cell.

The PDF estimate is not re-normalized to 1, and may fall short of this by the target numerical error.
If inspecting quantiles that are very far from the data, the quantiles may hit the grid boundary
or become erratic, making it necessary to reduce the numerical error target. However, default
arguments should be able to render any quantiles of reasonable accuracy.

Prior to ctmm v0.3.2, the default AKDE method was the autocorrelated Gaussian reference function
bandwidth. Starting in v0.3.2, the default AKDE method is the autocorrelated Gaussian reference
function bandwidth with debiased area.

Prior to ctmm v0.3.1, AKDEs included only errors due to autocorrelation uncertainty, which are
insignificant in cases such as IID data. Starting in v0.3.1, akde calculated an effective sample size
DOF.H and used this to estimate area uncertainty under a Gaussian reference function approxmation.
In v0.3.2, this method was further improved to use DOF.area from the Gaussian reference function
approximation.

Author(s)

C. H. Fleming and K. Winner.
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https://doi.org/10.1111/2041-210X.12673
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C. H. Fleming, D. Sheldon, W. F. Fagan, P. Leimgruber, T. Mueller, D. Nandintsetseg, M. J. Noonan,
K. A. Olson, E. Setyawan, A. Sianipar, J. M. Calabrese, “Correcting for missing and irregular data in
home-range estimation”, Ecological Applications, 28:4, 1003-1010 (2018) doi:10.1002/eap.1704.

See Also

bandwidth, mean.UD, raster,UD-method, revisitation

Examples

# Load package and data
library(ctmm)
data(buffalo)
DATA <- buffalo$Cilla

# calculate fit guess object
GUESS <- ctmm.guess(DATA,interactive=FALSE)
# in general, you should be running ctmm.select here instead of ctmm.fit
FIT <- ctmm.fit(DATA,GUESS)

# Compute akde object
UD <- akde(DATA,FIT)

# Plot data with AKDE
plot(DATA,UD=UD)

as.telemetry Import, coerce, summarize, and combine MoveBank data

Description

Functions to import MoveBank csv files, data.frame, and Move objects, coerce them into telemetry
objects, summarize them, and combine data from multiple tracking devices.

Usage

as.telemetry(object,timeformat="auto",timezone="UTC",projection=NULL,datum="WGS84",
dt.hot=NA,timeout=Inf,na.rm="row",mark.rm=FALSE,keep=FALSE,drop=TRUE,...)

## S3 method for class 'character'
as.telemetry(object,timeformat="auto",timezone="UTC",projection=NULL,datum="WGS84",

dt.hot=NA,timeout=Inf,na.rm="row",mark.rm=FALSE,keep=FALSE,drop=TRUE,...)

## S3 method for class 'data.frame'
as.telemetry(object,timeformat="auto",timezone="UTC",projection=NULL,datum="WGS84",

dt.hot=NA,timeout=Inf,na.rm="row",mark.rm=FALSE,keep=FALSE,drop=TRUE,...)

## S3 method for class 'Move'
as.telemetry(object,timeformat="auto",timezone="UTC",projection=NULL,datum="WGS84",

https://doi.org/10.1002/eap.1704
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dt.hot=NA,timeout=Inf,na.rm="row",mark.rm=FALSE,keep=FALSE,drop=TRUE,...)

## S3 method for class 'telemetry'
summary(object,...)

head(x,...)

## S3 method for class 'telemetry'
head(x,n=6L,...)

tail(x,...)

## S3 method for class 'telemetry'
tail(x,n=6L,...)

tbind(...)

Arguments

object A MoveBank CSV filename, MoveBank data.frame object, or Move object to
coerce, or a telemetry object to summarize.

timeformat Format argument for strptime, corresponding to the input data. Alternatively
timeformat="auto" will attempt to infer the timestamp format with parse_date.

timezone Timezone argument for strptime, corresponding to the input data.

projection Optional PROJ projection argument for the output telemetry object.

datum Optional argument to specify the input longitude-latitude or UTM datum. The
default is WGS84.

dt.hot Time-interval threshold at which GPS location fixes can be considered as “hot”
and location estimate precisions may be smaller (regardless of DOP value) for
assigning "hot" and "cold" location classes.

timeout GPS location fix timeout value (seconds) for assigning a "timed-out" location
class.

na.rm If some values are NA in the data frame, are the rows (times) deleted or are the
columns (data types) deleted.

mark.rm Delete Movebank manually marked outliers. Also see outlie.

keep Retain additonal columns after coercion. keep=TRUE retains all columns, while
individual columns to retain can be specified by name.

drop Only return a telemetry object for one individual if TRUE. Always return a list
of telemetry objects if FALSE.

... telemetry objects or a list of such objects, for tbind(). Optional arguments to
be fed to fread or read.csv, in the case of compressed files, for as.telemetry().

x telemetry object.

n Number of rows to return, if positive, or number of rows to omit, if negative.
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Details

For data that have not been corralled throuh Movebank, timestamps either need to be provided
in a POSIX format (see the output of Sys.time()) or supplied with a timeformat argument for
interpretation (see strptime). Alternatively, you can try your luck with timeformat="auto", and
parse_date will attempt to infer the format.

If no projection argument is specified, a two-point equidistant projection is calculated that should
be good for most range resident and migratory species. Global migrations that are not along one
geodesic (locally straight line) will probably suffer distortion.

as.telemetry() assumes Movebank naming conventions. Sufficient MoveBank columns include
individual.local.identifier (or tag.local.identifier), timestamp, location.long and
location.lat, while the optional Movebank columns include (e-obs) eobs.horizontal.accuracy.estimate,
(Telonics) GPS.Horizontal.Error, GPS.HDOP, (Argos) Argos.orientation, Argos.semi.minor
and Argos.semi.major or Argos.location.class, etc.. To have all columns detected and not
overwrite eachother’s information, it is best to have only one tracking device model per file im-
ported. Multiple deployments on a single individual can be merged afterwards, using tbind().

Value

as.telemetry returns a single telemetry object or list of telemetry objects if multiple animals
are identified.

as.telemetry will always report the smallest sampling interval, as a message, and the number
repeating timestamps, as a warning. Tiny sampling intervals (and repeating timestamps) can some-
times result from misformated timestamps or an incorrect timeformat argument. However, even if
geniune, they can necessitate data cleaning (outlie) or location-error modeling (vignette('error')).

Note

Prior to v1.1.1, datum was required to be a full PROJ string, but starting with v1.1.1 datum is just
taken to be the PROJ datum argument.

Author(s)

C. H. Fleming, X. Dong, B. Kranstauber, G. Péron, and K. Safi.

See Also

plot.telemetry, SpatialPoints.telemetry, uere.

bandwidth Calculate the optimal bandwidth matrix of movement data

Description

This function calculates the optimal bandwidth matrix (kernel covariance) for a two-dimensional
animal tracking dataset, given an autocorrelated movement model (Fleming et al, 2015). This
optimal bandwidth can fully take into account all autocorrelation in the data, assuming it is captured
by the movement model.

https://www.movebank.org/cms/movebank-content/movebank-attribute-dictionary
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Usage

bandwidth(data,CTMM,VMM=NULL,weights=FALSE,fast=NULL,dt=NULL,PC="Markov",error=0.01,
precision=1/2,verbose=FALSE,trace=FALSE,dt.plot=TRUE,...)

Arguments

data 2D timeseries telemetry data represented as a telemetry object.

CTMM A ctmm movement model as from the output of ctmm.fit.

VMM An optional vertical ctmm object for 3D bandwidth calculation.

weights By default, the weights are taken to be uniform, whereas weights=TRUE will
optimize the weights.

fast Use FFT algorithms for weight optimization. fast=NULL will attempt to intel-
ligently decide between the fast and exact algorithms based on computational
complexity.

dt Optional lag bin width for the FFT algorithm.

PC Preconditioner to use: can be "Markov", "circulant", "IID", or "direct".

error Maximum grid error for FFT algorithm, if dt is not specified.

precision Fraction of maximum possible digits of precision to target in weight optimiza-
tion. precision=1/2 results in about 7 decimal digits of precision if the pre-
conditioner is stable.

verbose Optionally return the optimal weights, effective sample size DOF.H, and other
information along with the bandwidth matrix H.

trace Produce tracing information on the progress of weight optimization.

dt.plot Execute a diagnostic dt.plot with a red line at dt, if weights=TRUE.

... Arguments passed to mean.ctmm.

Details

The weights=TRUE argument can be used to correct temporal sampling bias caused by autocorre-
lation. weights=TRUE will optimize n=length(data$t) weights via constrained & preconditioned
conjugate gradient algorithms. These algorithms have a few options that should be considered if the
data are very irregular.

fast=TRUE is an approximation that discretizes the data with timestep dt and applies FFT algo-
rithms, for a computational cost as low as O(n log n) with only O(n) function evaluations. If no
dt is specified, then a choice of dt will be automated with a message. If the data contain some
very tiny time intervals, say 1 second among hourly sampled data, then the default dt setting can
create an excessively high-resolution discretization of time, which will cause slowdown. In this
case CTMM should contain a location-error model and dt should be increased to a larger fraction of
the most-frequent sampling intervals. If the data are irregular (permitting gaps), then dt may
need to be several times smaller than the median to avoid slow down. In this case, try setting
trace=TRUE and decreasing dt below the median until the interations speed up and the number of
feasibility assessments becomes less than O(n).

fast=FALSE uses exact time spacing and has a computational cost as low as O(n2), including
O(n2) function evaluations. With PC="direct" this method will produce a result that is exact to
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within machine precision, but with a computational cost of O(n3). fast=FALSE,PC=’direct’ is
often the fastest method with small datasets, where n ≤ O(1,000), but scales terribly with larger
datasets.

Value

Returns a bandwidth matrix object, which is to be the optimal covariance matrix of the individual
kernels of the kernel density estimate.

Note

To obtain a bandwidth scalar representing the variance of each kernel, a ctmm object with isotropic=TRUE
is required. In this case, bandwidth will return bandwidth matrix with identical variances along its
diagonal. Note that forcing isotropic=TRUE will provide an inaccurate estimate for very eccentric
distributions.

In v1.0.1 the default fast, dt, PC arguments depend on the sample size, with fast=FALSE, PC="Direct"
for small sample sizes, fast=FALSE, PC="Markov" for moderate sample sizes, and fast=TRUE,
PC="Markov" for large sample sizes, where dt is taken to be the integer fraction of the median
sampling interval closest to the minimum sampling interval.

In v0.6.2 the default dt was increased form the minimum time difference to a small quantile no less
than error times the median.

Author(s)

C. H. Fleming.

References

T. F. Chan, “An Optimal Circulant Preconditioner for Toeplitz Systems”, SIAM Journal on Scientific
and Statistical Computing, 9:4, 766-771 (1988) doi:10.1137/0909051.

D. Marcotte, “Fast variogram computation with FFT”, Computers and Geosciences 22:10, 1175-
1186 (1996) doi:10.1016/S00983004(96)00026X.

C. H. Fleming, W. F. Fagan, T. Mueller, K. A. Olson, P. Leimgruber, J. M. Calabrese, “Rigor-
ous home-range estimation with movement data: A new autocorrelated kernel-density estimator”,
Ecology, 96:5, 1182-1188 (2015) doi:10.1890/142010.1.

C. H. Fleming, D. Sheldon, W. F. Fagan, P. Leimgruber, T. Mueller, D. Nandintsetseg, M. J. Noonan,
K. A. Olson, E. Setyawan, A. Sianipar, J. M. Calabrese, “Correcting for missing and irregular data in
home-range estimation”, Ecological Applications, 28:4, 1003-1010 (2018) doi:10.1002/eap.1704.

See Also

akde, ctmm.fit

https://doi.org/10.1137/0909051
https://doi.org/10.1016/S0098-3004%2896%2900026-X
https://doi.org/10.1890/14-2010.1
https://doi.org/10.1002/eap.1704
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buffalo African buffalo GPS dataset from Kruger National Park, South Africa.

Description

GPS data on six African buffalo. When using this dataset, please cite the original article by Getz et
al (2007) and the Movebank data package (Cross et al, 2016).

Usage

data("buffalo")

Format

A list of 6 telemetry objects.

Note

In ctmm v0.3.2 the erroneous location fix 606 was removed from buffalo[[4]] "Pepper".

References

W. M. Getz, S. Fortmann-Roe, P. C. Cross, A. J. Lyons, S. J. Ryan, C. C. Wilmers. LoCoH:
Nonparameteric kernel methods for constructing home ranges and utilization distributions. PLoS
ONE 2:2, e207 (2007).

P. C. Cross, J. A. Bowers, C. T. Hay, J. Wolhuter, P. Buss, M. Hofmeyr, J. T. du Toit, W. M.
Getz. Data from: Nonparameteric kernel methods for constructing home ranges and utilization
distributions. Movebank Data Repository. DOI:10.5441/001/1.j900f88t (2016).

See Also

as.telemetry, plot.telemetry, coati, gazelle, jaguar, pelican, turtle, wolf.

Examples

# Load package and data
library(ctmm)
data("buffalo")

# Extract movement data for a single animal
Cilla <- buffalo$Cilla

# Plot all sampled locations
plot(Cilla)
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cluster Clustering of movement-model parameters

Description

These functions cluster and classify individual movement models and related estimates, including
AKDE home-range areas, while taking into account estimation uncertainty.

Usage

cluster(x,level=0.95,level.UD=0.95,debias=TRUE,IC="BIC",units=TRUE,plot=TRUE,sort=FALSE,
...)

Arguments

x A list of ctmm movement-model objects, UD objects, or UD summary output, con-
stituting a sampled population, or a list of such lists, each constituting a sampled
sub-population.

level Confidence level for parameter estimates.

level.UD Coverage level for home-range estimates. E.g., 50% core home range.

debias Apply Bessel’s inverse-Gaussian correction and various other bias corrections.

IC Information criterion to determine whether or not population variation can be
estimated. Can be "AICc", AIC, or "BIC".

units Convert result to natural units.

plot Generate a meta-analysis forest plot with two means.

sort Sort individuals by their point estimates in forest plot.

... Further arguments passed to plot.

Details

So-far only the clustering of home-range areas is implemented. More details will be provided in an
upcomming manuscript.

Value

A list with elements P and CI, where P is an array of individual membership probabilities for sub-
population 1, and CI is a table with rows corresponding to the sub-population means, coefficients
of variation, and membership probabilities, and the ratio of sub-population means.

Note

The AICc formula is approximated via the Gaussian relation.

Author(s)

C. H. Fleming.
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See Also

akde, ctmm.fit, meta.

Examples

# load package and data
library(ctmm)
data(buffalo)

# fit movement models
FITS <- AKDES <- list()
for(i in 1:length(buffalo))
{

GUESS <- ctmm.guess(buffalo[[i]],interactive=FALSE)
# use ctmm.select unless you are certain that the selected model is OUF
FITS[[i]] <- ctmm.fit(buffalo[[i]],GUESS)

}

# calculate AKDES on a consistent grid
AKDES <- akde(buffalo,FITS)

# color to be spatially distinct
COL <- color(AKDES,by='individual')

# plot AKDEs
plot(AKDES,col.DF=COL,col.level=COL,col.grid=NA,level=NA)

# cluster-analysis of buffalo
cluster(AKDES,sort=TRUE)

coati Coatis on Barro Colorado Island, Panama.

Description

GPS data on 2 coati. When using this dataset, please cite the original article by Powell et al (in
preparation) and the Movebank data package (Kays and Hirsch, 2015).

Usage

data("coati")

Format

A list of 2 telemetry objects.
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References

R. A. Powell, S. Ellwood, R. Kays. Stink or swim: techniques to meet the challenges for the study
and conservation of small critters that hide, swim or climb and may otherwise make themselves
unpleasant. In L. Harrington and D. W. Macdonald; Biology and Conservation of Mustelids and
Procyonids (in preparation).

R. Kays, B. T. Hirsch Data from: Stink or swim: techniques to meet the challenges for the study
and conservation of small critters that hide, swim or climb and may otherwise make themselves
unpleasant. Movebank Data Repository. DOI:10.5441/001/1.41076dq1 (2015).

See Also

as.telemetry, plot.telemetry, buffalo, gazelle, jaguar, pelican, turtle, wolf.

Examples

# Load package and data
library(ctmm)
data("coati")

# Plot all sampled locations
plot(coati,col=rainbow(2))

color Color telemetry objects by time

Description

These functions facilitate the coloring of tracks by annotating tracking data with time/location spe-
cific information and computing color arguments for plot.

Usage

annotate(object,by="all",cores=1,...)

color(object,by="time",col.fn=NULL,alpha=1,dt=NULL,cores=1,...)

Arguments

object A telemetry object or list of objects. color can also take ctmm and UD objects.

by What to annotate or color times by. Options include "individual", "time",
"sun", "moon", "season", and "tropic" (see Details below). ctmm and UD
objects can only be colored by "individual".

col.fn Optional coloring function that can take a [0,1] interval and alpha channel argu-
ment.

alpha Base alpha channel value.
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dt Sampling interval specification for making oversampled times more transparent.
If NULL, the median will be used. Disabled if zero.

cores Number of annotations or overlap calculations to peform in parallel. cores=0
will use all cores, while cores<0 will reserve abs(cores).

... Additional arguments.

Details

Annotated telemetry objects are required for color by arguments "sun", "moon", "season", or
"tropic".

by="time" colors tracking data with a gradient that increases in time. by="sun" colors according to
the sine of the sun’s altitude, which is proportional to solar flux during daylight hours. by="moon"
colors according to the illuminated fraction of the moon. by="season" colors according to the
length of the day, and therefore corresponds to the local season. by="tropic" currently colors
according to the calender day, but will eventually be upgraded to tropical-year cycle. The default
col.fn argument runs from blue to red with increasing time, sunlight, moonlight, or day length.

by="individual" assigns colors to minimize the maximum combined spatial and color overlap.
Finding the best color assignment is an NP -hard problem that is here approximated in O(N3) time
with a custom greedy algorithm.

Other named columns in the telemetry object can also be used with color, by specifying the
column name with by.

Value

annotate returns an annotated telemetry object with extra columns to facilitate coloring. color
returns a valid col argument for {plot.telemetry}.

Author(s)

C. H. Fleming.

See Also

plot.telemetry

Examples

# Load package and data
library(ctmm)
data(buffalo)

# assign distinct colors to buffalo
COL <- color(buffalo,by='individual')
# Notice the separation into RGB and CMY for maximum contrast
plot(buffalo,col=COL)

# annotate buffalo with sunlight data and compute colors
buffalo <- annotate(buffalo,cores=2) # CRAN policy limits to 2 cores
COL <- color(buffalo,by='sun')
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# use North-preserving projection and plot
projection(buffalo) <- median(buffalo)
plot(buffalo,col=COL)

ctmm Specify, fit, and select continuous-time movement models

Description

These functions allow one to propose hypothetical movement models (with initial estimates), fit
those models to the data, and select among those models via an information criterion. The fitting
functions wrap around optim and ctmm.loglike to fit continuous-time movement models to 2D
animal tracking data as described in Fleming et al (2014) and Fleming et al (2015), and Fleming et
al (2017).

Usage

ctmm(tau=NULL,omega=FALSE,isotropic=FALSE,range=TRUE,circle=FALSE,error=FALSE,
axes=c("x","y"),...)

ctmm.loglike(data,CTMM,REML=FALSE,profile=TRUE,zero=0,verbose=FALSE,compute=TRUE,...)

ctmm.fit(data,CTMM=ctmm(),method="pHREML",COV=TRUE,control=list(),trace=FALSE)

ctmm.select(data,CTMM,verbose=FALSE,level=1,IC="AICc",MSPE="position",trace=FALSE,cores=1,
...)

Arguments

tau Array of autocorrelation timescales (explained below).

omega Frequency (2π/period) of oscillatory range crossings.

isotropic A Boolean denoting whether or not the animal’s covariance is circular or ellip-
tical.

range A Boolean denoting whether or not the movement model has a finite range.

circle (2π divided by) the period it takes the animal to stochastically circle its mean
location.

error A Boolean denoting whether or not to use annotated telemetry error estimates
or an estimate of the error’s standard deviation if the data are not annotated with
error estimates or when HDOP = 1.

axes Spatial dimensions of the movement model.

data Timeseries data represented as a telemetry object.

CTMM A ctmm movement-model object containing the initial parameter guesses con-
forming to the basic structure of the model hypothesis. ctmm.select can accept
a list of such objects.
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REML Use residual maximum likelihood if TRUE. Not recommended.

profile Analytically solve for as many covariance parameters as possible.

zero Calculates log(likelihood)−zero, instead of just log(likelihood), in a way that
maintains numerical precision if the constant zero is close to the log likelihood.
Used internally by ctmm.fit.

verbose Return additional information. See "Value" below.

compute Only return computational information if FALSE.

method Fitting method to use: "ML", "HREML", "pREML", "pHREML", or "REML". See
"Description" below.

COV Estimate the autocorrelation parameter covariance matrix.

control An optional argument list for optimizer.

trace Report progress updates. Can be among 0:3 with increasing detail.

level Attempt to simplify a model if a feature’s non-existence falls within this level of
confidence interval.

IC Information criterion used for selection. Can be "AICc", "AIC", "BIC", "LOOCV",
"HSCV", or none (NA). AICc is approximate.

MSPE Reject non-stationary features that increase the mean square predictive error of
"position", "velocity", or not (NA).

cores Maximum number of models to fit in parallel. cores=0 will use all cores, while
cores<0 will reserve abs(cores).

... Further arguments passed to ctmm.fit.

Details

Model fitting and selection first requires a prototype model with guesstimated parameters (i.e.,
Brownian motion with a particular diffusion rate). The initial ctmm parameter guess can be gen-
erated by the output of ctmm.guess, variogram.fit or manually specified with the function
ctmm(...), where the argument tau is explained below and additional model options described
in vignette("ctmm").

By default, tau (τ ) is an ordered array of autocorrelation timescales. If length(tau)==0, then an
IID bi-variate Gaussian model is fit to the data. If length(tau)==1, then an Ornstein-Uhlenbeck
(OU) model (Brownian motion restricted to a finite home range) is fit the data, where tau is the po-
sition autocorrelation timescale. tau=Inf then yields Brownian motion (BM). If length(tau)==2,
then the OUF model (continuous-velocity motion restricted to a finite home range) is fit to the data,
where tau[1] is again the position autocorrelation timescale and tau[2] is the velocity autocorre-
lation timescale. tau[1]=Inf then yields integrated Ornstein-Uhlenbeck (IOU) motion, which is a
spatially unrestricted continuous-velocity process.

Two new models were introduced in ctmm version 0.5.2 for the case of tau[1]==tau[2], which can
happen with short tracks of data. When tau[1]==tau[2] and omega==0, the model is categorized
as OUf—a special case of OUF—and the two tau parameters are treated as identical. On the other
hand, when tau[1]==tau[2] and omega>0, an oscillatory model is implemented, which we refer
to as OUΩ.

The potential fitting methods—maximum likelihood (ML), residual maximum likelihood (REML),
perturbative REML (pREML), hybrid REML (HREML), and perturbative hybrid REML (pHREML)—are
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described in Fleming et al (2019). In general, pHREML is the best method, though when parameter
estimates lie near boundaries it can fail, in which case ctmm.fit will fall back to HREML, as reported
by the method slot of the resulting fit object.

The control list can take the following arguments, with defaults shown:

method="pNewton" The partial-Newton method of optimizer is default. See optim for alternative
methods in multiple dimensions.

precision=1/2 Fraction of machine numerical precision to target in the maximized likelihood
value. MLEs will necessarily have half this precision. On most computers, precision=1 is
approximately 16 decimal digits of precision for the likelihood and 8 for the MLEs.

maxit=.Machine$integer.max Maximum number of iterations allowed for optimization.

Model selection in ctmm.select proceeds in two phases. If there are a large number of parame-
ters that must be fit numerically (such as when error is modeled), then the target model (argument
CTMM) is worked toward by first fitting simpler, compatible models. The second phase proceeds by
attempting to simplify the autocorrelation model and complexify the deterministic (trend) model
until the information criterion fails to improve. The intent of working in these directions is to im-
prove numerical convergence and avoid fitting trends to autocorrelation. Note that simpler models
in a nested hierarchy will only be attempted if they appear credible, which can be adjusted with the
level argument. level=1 will, therefore, always attempt a simpler model.

The leave-one-out cross validation IC, IC="LOOCV", is (-2 times) the sum of log-likelihoods of the
validation data, after fitting to and conditioning on the training data. This information criterion
is intended for small amounts of data where AIC/BIC are not valid, and where the questions of
interest are targeted at the finest scales of the data, such as speed or occurrence. Unlike other
model-selection criteria, the computational complexity of LOOCV is O(n2), which is very slow
for sample sizes on the order of 10-100 thousand locations. Furthermore, as autocorrelation in the
validation data is ignored, this information criterion is not valid for making inferences at scales
coarser than the sampling interval, such as home range.

The half-sample cross validation IC, IC="HSCV", is (-2 times) the sum of log-likelihoods of the
validation data, after fitting to and conditioning on the training data consisting of the first (and
second) halves of the data when split temporally. This information criterion is intended for when
few range crossings are observed and AIC/BIC may not be valid.

Value

The function ctmm returns a prototype ctmm movement-model object. By default, ctmm.loglike
returns the log-likelihood of the model CTMM. ctmm.fit (and ctmm.loglike with verbose=TRUE)
returns the estimated ctmm movement-model object with all of the components of CTMM plus the
components listed below. ctmm.select returns the best model by default, or the sorted list of
attempted models if verbose=TRUE, with the best model being first in the list.

AICc The approximate corrected Akaike information criterion for multivariate distributions with
variable numbers of unknown mean and (structured) covariance parameters (Burnham & An-
derson, Eq. 7.91). This formula is only exact for IID data.

loglike The log-likelihood.

sigma The maximum likelihood variance/covariance estimate (possibly debiased). For the end-
lessly diffusing BM and IOU processes, this is instead the diffusion rate estimate.
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mu The maximum likelihood stationary mean vector estimate.

COV.mu The covariance matrix of the mu estimate, assuming that the covariance estimate is correct.

DOF.mu The effective number of degrees of freedom in the estimate of mu, assuming that the auto-
correlation model is correct. This can be much smaller than length(data$t) if the data are
autocorrelated.

COV Covariance of the autocovariance parameter estimate vector c(sigma,tau,circle), as de-
rived (asymptotically) from the hessian of the log-likelihood function, and where sigma is
parameterized in terms of its largest variance major, the ratio of the smallest to largest variance
minor, and angle of orientation. Typically, sigma’s major parameter is extremely correlated
to tau[1], and sequential components of tau are slightly correlated.

Warnings

The warning "MLE is near a boundary or optim() failed" indicates that you should be using ctmm.select
rather than ctmm.fit, because some features are not well supported by the data.

The warning "pREML failure: indefinite ML Hessian" is normal if some autocorrelation parameters
cannot be well resolved.

Note

The default optimization method in ctmm v0.5.7 and above is optimizer’s "pNewton". Annecdo-
tally, on these problems, optimizer’s pNewton method generally outperforms optim’s "Nelder-Mead",
which generally outperforms optim’s "BFGS" and "L-BFGS-B" methods. With default arguments,
"pNewton" is about half as fast as "Nelder-Mead", but is resolving about twice as much numerical
precision by default.

The AICs/BICs of endlessly diffusing models like BM and IOU cannot be easily compared to the
AICs/BICs of range resident models like bivariate Gaussian, OU, and OUF, as their joint likelihood
functions are infinitely different. Endlessly diffusing models have to be conditioned off of an initial
state, which we derive in ctmm by taking the large range limit of a range-restricted process. I.e.,
BM is the limit OU(Inf) and IOU(tau) is the limit OUF(Inf,tau). Using comparable likelihood
functions gives up statistical efficiency and the objective prior. Moreover, comparing conditional
likelihoods—with the objective prior taken from the joint likelihood—does not appear to select
the true model with a likelihood ratio test. Different criteria must be used to select between range
resident and endlessly diffusing movement models.

Prior to v0.3.6, the univariate AICc formula was (mis)used, with the full parameter count treated as
degrees of freedom in the mean. As of v.0.3.6, the mean and autocovariance parameters are treated
separately in the approximate multivariate AICc formula (Burnham & Anderson, Eq. 7.91). Still,
this improved formula is only exact for IID data.

Prior to v0.3.2, ctmm.select would consider every possible model. This is no longer feasible with
current versions of ctmm, as the number of possible models has grown too large.

Author(s)

C. H. Fleming and G. Péron.
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See Also

ctmm.boot, ctmm.guess, optimizer, summary.ctmm, variogram.fit.

Examples

# Load package and data
library(ctmm)
data(buffalo)
DATA <- buffalo$Cilla

GUESS <- ctmm.guess(DATA,interactive=FALSE)
# in general, you want to run ctmm.select instead
FIT <- ctmm.fit(DATA,GUESS)

# some human-readable information
summary(FIT)

ctmm-FAQ ctmm FAQ

Description

Frequently asked questions for the ctmm package.

Details

General recommendations

1. Work through the vignettes vignette("variogram") and vignette("akde"). Also, see the
help file for the method of interest, and its example.

https://doi.org/10.1086/675504
https://doi.org/10.1103/PhysRevE.91.032107
https://doi.org/10.1016/j.ecoinf.2017.04.008
https://doi.org/10.1016/j.ecoinf.2017.04.008
https://doi.org/10.1111/2041-210X.13270
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2. Do not save workspaces between sessions. They will become corrupted over time. In RStudio,
go to Tools: Global Options: Workspace, uncheck Restore and set Save to Never.

3. If RStudio is crashing frequently in Windows (or your display driver is crashing), try setting
the rendering engine to Software under Tools : Global Options : General : Advanced :
Rendering Engine.

4. Never edit or save your CSV in Microsoft Excel. The dates will be reformatted incorrectly
and inconsistently.

5. If using Windows, make sure to have the suggested version of “Rtools” installed. If using
MacOS, make sure to have “Xcode” installed. If using Ubuntu, make sure to have “build-
essential” installed. Otherwise, you can sometimes run into problems when trying to update
packages.

6. Upgrade R to the latest version and update all of your packages.

7. The development build can be installed via remotes::install_github("ctmm-initiative/ctmm").

8. Sometimes installing from Github can silently fail to overwrite old files, requiring the package
to be manually uninstalled, and then re-installed after restarting.

9. Stable beta releases between the CRAN release are published here on request.

10. The ctmm user’s group is a good place to find and ask for help.

11. Bug reports and feature requests can be raised at the Github project page.

Help installing packages on Linux

These are the packages I needed in Ubuntu:

sudo apt install ffmpeg fftw3 libfftw3-dev libgdal-dev libgeos-dev libgit2-dev libgmp-dev
libgsl-dev libmpfr-dev libproj-dev libnode-dev libudunits2-dev r-base-core

as.telemetry reports abnormal sampling intervals and speeds

Make sure that you have the correct timezone and timeformat arguments specified. Also, see
outlie.

rdb database corruption, "could not find function", "cannot coerce class", and other weird
errors

R might not have installed or loaded the package correctly—e.g., some files may have failed to
overwrite previous versions—or the workspace/session might be corrupted. Uninstall ctmm, restart
R without saving the workspace/session, and install ctmm again.

Infinite recursion and stack overflow errors

ctmm has no recursive functions, so I am not exactly sure what causes this error, but it only occurs
with certain versions of R on certain computer architectures. There are several solutions that have
worked for people, including restarting R in a fresh session and updating their software. Alterna-
tively:

1. Reboot your computer.

2. Increase the allowed number of nested expressions within R via options(expressions=10000)
or some other large number.

3. Try a different computer.

http://www2.physics.umd.edu/~hfleming/
https://groups.google.com/g/ctmm-user
https://github.com/ctmm-initiative/ctmm


24 ctmm.boot

plot complains about the datatype or has weird errors

Namespace collision sometimes occurs between raster, sp, move, and ctmm. Either restart R and
only load the ctmm package, or run ctmm::plot instead of plot.

North is no longer up after importing data

The default projection in ctmm does not preserve the direction of North, but better preserves dis-
tances for elongated distributions. See the projection argument in as.telemetry and the example
in projection. The compass function is also useful for pointing north.

projection complains about the datatype and fails

Namespace collision can occur between raster and ctmm. Either restart R and only load the ctmm
package, or run ctmm::projection instead of projection.

ctmm.guess has no save button

Maximize the plot window and/or increase your screen resolution.

manipulate panel does not popup in ctmm.guess or zoom

Click the gear icon in the upper-left corner of the plot window.

Gear icon missing in ctmm.guess or zoom

Recent versions of manipulate and/or RStudio seem to have some issues. Sometimes the gear icon
does not render unless you re-run the function 2-5 times.

manipulate::isAvailable is not found

You probably have an outdated copy of the manipulate package installed. Update R to the latest
version and then update all of your packages. This seems to happen frequently with the MacOS
release of R.

Author(s)

C. H. Fleming

ctmm.boot Parametric bootstrap continuous-time movement models

Description

This function allows the point estimates and confidence intervals of an initial estimated movement
model to be improved by parametric boostrap, as described in Fleming et al (2019).

Usage

ctmm.boot(data,CTMM,method=CTMM$method,AICc=FALSE,iterate=FALSE,robust=FALSE,error=0.01,
clamp=0.001,cores=1,trace=TRUE,...)
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Arguments

data Timeseries data represented as a telemetry object.

CTMM A ctmm movement-model object from the output of ctmm.fit containing the
initial parameter estimates.

method Fitting method to use: "ML", "HREML", "pREML", "pHREML", or "REML". See
ctmm.fit for descriptions.

AICc Run dual set of simulations to approximate AICc values via Kullback–Leibler
divergence. Otherwise, only the AIC is updated.

iterate Iteratively solve for the parameters such that the average estimate (of method) is
that of the data, whereas with iterate=FALSE only the first-order correction is
calculated from the initial estimate.

robust Uses robust estimates of the average and covariation for debiasing. Useful when
parameters are near boundaries.

error Relative standard error target for bootstrap ensemble estimates and nonlinear
iterations.

clamp Fix the COV/CoV estimate to the initial COV/CoV estimate, until error ≪
clamp.

cores Number of simulations to run in parallel. cores=NULL will use all cores, while
cores<0 will reserve abs(cores).

trace Report progress updates. Can be among 0:2 with increasing detail.

... Further arguments passed to ctmm.fit.

Value

A model fit object with relatively unbiased estimates of location covariance, and autocorrelation
timescales (and more accurate CIs than ctmm.fit). If AICc=TRUE, then, in addition to an updated
AICc slot, the model fit object will also contain a VAR.AICc slot quantifying the numerical variance
in the AICc estimate. This variance can be decreased by decreasing argument error.

Note

The bootstrapped COV estimates tend to be far more noisy than the bootstrapped point estimates.
clamp can fix the bootstrapped COV/CoV estimate to the initial COV/CoV estimate until the point
estimates obtain higher numerical precision.

Author(s)

C. H. Fleming.

References

C. H. Fleming, M. J. Noonan, E. P. Medici, J. M. Calabrese, “Overcoming the challenge of small
effective sample sizes in home-range estimation”, Methods in Ecology and Evolution 10:10, 1679-
1689 (2019) doi:10.1111/2041210X.13270.

https://doi.org/10.1111/2041-210X.13270
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See Also

ctmm.fit.

Examples

# Load package and data
library(ctmm)
data(gazelle)
DATA <- gazelle[[3]]

GUESS <- ctmm.guess(DATA,interactive=FALSE)
FIT <- ctmm.select(DATA,GUESS)

# some human-readable information
summary(FIT)

# in general, you will want to set iterate=TRUE,trace=TRUE
BOOT <- ctmm.boot(DATA,FIT,iterate=FALSE,trace=FALSE)

# compare to the previous estimate
summary(BOOT)

difference Estimate the proximity of two individuals

Description

Given a pair of telemetry objects and ctmm movement models, predict their location differences
or midpoints at shared times and estimate their distances.

Usage

difference(data,CTMM,t=NULL,...)

midpoint(data,CTMM,t=NULL,complete=FALSE,...)

distances(data,CTMM,t=NULL,level=0.95,...)

proximity(data,CTMM,t=NULL,GUESS=ctmm(error=TRUE),debias=TRUE,level=0.95,...)

Arguments

data A list of two telemetry objects.

CTMM A list of two ctmm movement-model objects.

t An optional vector of times or range of times over which to predict the location
differences.

complete Additionally calculate timestamps and geographic coordinates.
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level Confidence level for the distance/proximity estimate.

GUESS An optional ctmm object to specify the candidate model parameters of the loca-
tion differences.

debias Include inverse-χ2 bias corrections.

... Options passed to ctmm.select.

Details

The difference function predicts the location difference vectors, (xA−xB , yA−yB), for a pair of
individuals, {A,B}, at overlapping times. The midpoint function predicts the location midpoints,
(xA + xB , yA + yB)/2, for a pair of individuals. The distances function further estimates the
instantaneous distances between individuals. The proximity function fits an autocorrelation model
to the output of difference, and then compares the mean-square distance between the individuals
to what you would expect if the two individuals were moving independently.

Value

difference and midpoint output telemetry objects of the location differences and midpoints
with prediction covariances. distances outputs a data.frame of distance estimates with confi-
dence intervals. proximity outputs a ratio estimate with confidence intervals, where values <1
indiciate that the two individuals are closer on average than expected for independent movement,
1 is consistent with independent movement, and values >1 indicate that the individuals are farther
from each other on average than expected for independent movement. Therefore, if the CIs contain
1, then the distance is insignificant with a p-value threshold of 1-level (two-sided) or half that for
a one-sided test.

Author(s)

C. H. Fleming.

See Also

ctmm.select, predict.ctmm

Examples

#Load package
library(ctmm)

# load buffalo data
data(buffalo)

# select two buffalo that overlap in space and time
DATA <- buffalo[c(1,3)]
# plot the two buffalo
plot(DATA,col=c('red','blue'))

FITS <- list()
for(i in 1:2)
{
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GUESS <- ctmm.guess(DATA[[i]],interactive=FALSE)
# in general, you want to use ctmm.select
FITS[[i]] <- ctmm.fit(DATA[[i]],GUESS)

}

# calculate difference vectors
DIFF <- difference(DATA,FITS)
# plot the difference vectors with prediction-error ellipses
plot(DIFF)

# calculate the proximity statistic
# disabling location error for speed
proximity(DATA,FITS,GUESS=ctmm(error=FALSE))

distance Calculate the square distance between two distributions or location
estimates

Description

This function calculates various square distances measures between distributions, including the,
Bhattacharyya distance, Mahalanobis distance, and Euclidean distance.

Usage

distance(object,method="Mahalanobis",sqrt=FALSE,level=0.95,debias=TRUE,...)

Arguments

object A list of ctmm fit objects or single-location telemetry objects to compare.

method Square distance measure to return: "Bhattacharyya", "Mahalanobis", or "Euclidean".

sqrt Return the linear distance.

level The confidence level desired for the output.

debias Approximate debiasing of the square distance.

... Not currently used.

Value

A list with tables DOF, containing the effective samples sizes of the estimates, and CI, containing the
confidence intervals of the distance estimates. A value of 0 implies that the two distributions have
the same mean location, while larger values imply that the two distributions are farther apart. The
(square) Euclidean distance has units of square meters, if sqrt=FALSE. The square Mahalanobis and
Bhattacharyya distances are unitless. For the Euclidean distance, only the centroids are compared
(in meters if sqrt=TRUE or square meters if sqrt=FALSE).

Note

The Bhattacharyya distance (BD) is naturally of a squared form and is not further squared.
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Author(s)

C. H. Fleming

See Also

ctmm.fit, overlap

Examples

# Load package and data
library(ctmm)
data(buffalo)

# fit models for first two buffalo
GUESS <- lapply(buffalo[1:2], function(b) ctmm.guess(b,interactive=FALSE) )
# using ctmm.fit here for speed, but you should almost always use ctmm.select
FITS <- lapply(1:2, function(i) ctmm.fit(buffalo[[i]],GUESS[[i]]) )
names(FITS) <- names(buffalo[1:2])

# Mahalanobis distance between these two buffalo
distance(FITS)

dt.plot Functions for diagnosing sampling schedules

Description

Produces a log-scale plot of the sorted sampling intervals for inspection.

Usage

dt.plot(data,...)

Arguments

data A telemetry object.

... Additional options passed to plot.

Details

Horizontal lines are included at common sampling intervals (e.g., 1-hour) and dimmed horizontal
lines are included at common subdivisions (e.g., 30-minutes).

Author(s)

C. H. Fleming.
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See Also

as.telemetry.

Examples

# Load package and data
library(ctmm)
data(gazelle)

# Plot the sampling intervals
dt.plot(gazelle)

emulate Draw a random model-fit from the sampling distribution

Description

This function generates random model-fit statistics from the sampling distribution of a given ctmm
movement model and sampling schedule. If fast=FALSE, the results are exact, though slow to
evaluate. Else if fast=TRUE, the central-limit theorem is invoked.

Usage

emulate(object,...)

## S3 method for class 'ctmm'
emulate(object,data=NULL,fast=FALSE,...)

## S3 method for class 'telemetry'
emulate(object,CTMM,fast=FALSE,...)

Arguments

object telemetry data or ctmm model object.

CTMM A ctmm movement-model object.

data Optional telemetry object for exact results.

fast Whether or not to invoke the central-limit theorem.

... Arguments passed to ctmm.fit.

Details

Given fast=FALSE, which requires the data argument specified, new data are simulated from the
CTMM movement model with the same sampling schedule and error structure as data. A new model,
of the same structure as CTMM, is then fit to the simulated data and returned.

Given fast=TRUE, a model-fit object is sampled from the central-limit distribution, using the co-
variance estimates within CTMM. Strictly positive parametes, such as area, are log-transformed prior
to the normal approximation. Note that this faster method does not adjust for bias.
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Value

A ctmm movement model with the same structure as CTMM.

Author(s)

C. H. Fleming.

See Also

ctmm.fit, simulate.ctmm

encounter Encounter statistics

Description

Functions to calculate encounter probabilities [IN DEVELOPMENT] and the conditional location
distribution of where encounters take place (conditional on said encounters taking place), as de-
scribed in Noonan et al (2021).

Usage

encounter(data,UD,method="ECDF",debias=TRUE,level=0.95,r=NULL,res.time=1,normalize=FALSE,self=TRUE,...)

cde(object,include=NULL,exclude=NULL,debias=FALSE,...)

Arguments

data A list of telemetry objects.

UD A list of aligned UD objects.

method Encounter probability calculation method: trajectory based ("ECDF") or distri-
bution based ("PDF").

debias Approximate bias corrections.

level Confidence level for relative encounter rates.

r Grid of distances for ECDF calculation.

res.time Relative time-grid resolution for predicting ECDF distances.

normalize Normalize relative encounter rates by the average uncorrelated self-encounter
rate.

self Fix the self-interaction rate appropriately.

include A matrix of interactions to include in the calculation (see Details below).

exclude A matrix of interactions to exclude in the calculation (see Details below).

... Additional arguments for future use.
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Details

[OUTDATED] Encounter probabilities are standardized to 1 meter, and must be multiplied by the
square encounter radius (in meters), to obtain other values. If normalize=FALSE, the relative en-
counter rates have units of 1/m2 and tend to be very small numbers for very large home-range
areas. If normalize=TRUE, the relative encounter rates are normalized by the average uncorrelated
self-encounter rate, which is an arbitrary value that provides a convenient scaling.

The include argument is a matrix that indicates which interactions are considered in the calcu-
lation. By default, include = 1 - diag(length(object)), which implies that all interactions are
considered aside from self-interactions. Alternatively, exclude = 1 - include can be specified,
and is by-default exclude = diag(length(object)), which implies that only self-encounters are
excluded.

Value

encounter produces an array of standardized encounter probabilities with CIs, while cde produces
a single UD object.

Note

Prior to v1.2.0, encounter() calculated the CDE and rates() calculated relative encounter prob-
abilities.

Author(s)

C. H. Fleming

References

M. J. Noonan, R. Martinez-Garcia, G. H. Davis, M. C. Crofoot, R. Kays, B. T. Hirsch, D. Caillaud,
E. Payne, A. Sih, D. L. Sinn, O. Spiegel, W. F. Fagan, C. H. Fleming, J. M. Calabrese, “Estimating
encounter location distributions from animal tracking data”, Methods in Ecology and Evolution
(2021) doi:10.1111/2041210X.13597.

See Also

akde, overlap

Examples

# Load package and data
library(ctmm)
data(buffalo)

# fit models for first two buffalo
GUESS <- lapply(buffalo[1:2], function(b) ctmm.guess(b,interactive=FALSE) )
# in general, you should use ctmm.select here
FITS <- lapply(1:2, function(i) ctmm.fit(buffalo[[i]],GUESS[[i]]) )
names(FITS) <- names(buffalo[1:2])

# create aligned UDs

https://doi.org/10.1111/2041-210X.13597
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UDS <- akde(buffalo[1:2],FITS)

# calculate 100-meter encounter probabilities
P <- encounter(UDS)
P$CI * 100^2

# calculate CDE
CDE <- cde(UDS)

# plot data and encounter distribution
plot(buffalo[1:2],col=c('red','blue'),UD=CDE,col.DF='purple',col.level='purple',col.grid=NA)

export Export ctmm data formats

Description

Functions to export ctmm data formats into common sp, sf, raster, and ESRI formats.

Usage

as.sf(x,error=FALSE,...)

## S4 method for signature 'UD'
raster(x,DF="CDF",...)

## method for class 'telemetry'
SpatialPoints.telemetry(object,...)

## method for class 'telemetry'
SpatialPointsDataFrame.telemetry(object,...)

## method for class 'telemetry'
SpatialPolygonsDataFrame.telemetry(object,level.UD=0.95,...)

## method for class 'UD'
SpatialPolygonsDataFrame.UD(object,level.UD=0.95,level=0.95,convex=FALSE,...)

## S4 method for signature 'UD,character'
writeRaster(x,filename,format,DF="CDF",...)

## S4 method for signature 'list,character'
writeVector(x,filename,...)

## S4 method for signature 'list,missing'
writeVector(x,filename,...)

## S4 method for signature 'telemetry,character'
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writeVector(x,filename,filetype="ESRI Shapefile",error=TRUE,level.UD=0.95,...)

## S4 method for signature 'telemetry,missing'
writeVector(x,filename,filetype="ESRI Shapefile",error=TRUE,level.UD=0.95,...)

## S4 method for signature 'UD,character'
writeVector(x,filename,filetype="ESRI Shapefile",level.UD=0.95,level=0.95,convex=FALSE,

...)

## S4 method for signature 'UD,missing'
writeVector(x,filename,filetype="ESRI Shapefile",level.UD=0.95,level=0.95,convex=FALSE,

...)

Arguments

x telemetry or UD object.

error Export telemetry location error circles/ellipses as polygons if TRUE.

object telemetry or UD object.

level.UD Coverage level of the UD area. I.e., the 50% core home range would be given
by level.UD=0.50.

level Confidence level for the magnitude of the above area. I.e., the 95% CI of the
core home range area.

convex Export convex coverage areas if TRUE. By default, the highest density regions
(HDRs) are exported. convex=1 will export the level.UD convex area, while
convex=2 will export the convex hull of the level.UD HDR coverage area.

DF Rasterize the probability density function "PDF", probability mass function "PMF",
or cumulative distribution function "CDF".

filename Character name of file for raster or vector file.

format Output file type (see writeFormats). If this argument is not provided, it is
inferred it from the filename extension. If that fails, the default 'raster' format
is used, which can be changed using rasterOptions.

filetype A file format associated with a GDAL "driver". See gdal(drivers=TRUE) or
the GDAL docs. If filetype=NULL, the filetype is inferred from the filename
extension.

... Optional arguments passed to writeRaster, writeVector, etc..

Details

as.sf exports ctmm objects to the sf format. Arguments to ctmm Spatial* export functions can
also be used, such as level.UD and level.

raster exports UD object point-estimates distribution functions (DF) to raster objects. DF="PDF"
gives the average probability density per cell, DF="PMF" gives the total probability per cell, and
DF="CDF" gives the cumulative probability.

Spatial* functions export ctmm objects to sp formats.

https://gdal.org/drivers/vector/index.html
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writeRaster writes a raster file to disk, with pixel values corresponding to the distribution function
DF.

writeVector writes a shapefile to disk, with UD polygons corresponding to the low-CI, point-
estimate, and high-CI home-range area estimates.

Value

as.sf returns an sf object for the input points or polygons, with individual identity and other
information retained.

raster returns a raster of the point-estimate distribution function DF, given a UD object.

SpatialPoints.telemetry returns a single spatialPoints object for the x-y locations, without
individual identity and other information retained.

SpatialPointsDataFrame.telemetry returns a SpatialPointsDataFrame with the individual
identities and other data recorded in the data frame retained.

SpatialPolygonsDataFrame.telemetry returns a SpatialPolygonsDataFrame that encodes the
location estimate’s error circles/ellipses.

SpatialPolygonsDataFrame.UD returns a SpatialPolygonsDataFrame of the low-CI, point-estimate,
and high-CI home-range area estimates, in the appropriate order for plotting.

Author(s)

C. H. Fleming and K. Safi.

See Also

akde, as.telemetry, occurrence.

extent Extent

Description

Functions to calculate the (x, y) plotting extent (or bounding box) of various ctmm objects or list
of such objects, for use when plotting multiple ctmm objects.

Usage

## S4 method for signature 'telemetry'
extent(x,level=1,...)

## S4 method for signature 'ctmm'
extent(x,level=0.95,level.UD=0.95,...)

## S4 method for signature 'UD'
extent(x,level=0.95,level.UD=0.95,complete=FALSE,...)
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## S4 method for signature 'variogram'
extent(x,level=0.95,threshold=2,...)

## S4 method for signature 'list'
extent(x,...)

## S4 method for signature 'data.frame'
extent(x,level=1,...)

## S4 method for signature 'matrix'
extent(x,level=1,...)

Arguments

x A telemetry, ctmm, or UD object.

level For telemetry objects, this is the fraction of locations bounded, according to
two-sided quantiles. For ctmm and UD objects, this is confidence level for the
magnitude of the utilization area circumscribed by level.UD.

level.UD Coverage level of the UD area. I.e., the 50% core home range would be given
by level.UD=0.50.

complete Also calculate longitude-latitude extent of UD objects.

threshold Limit ylim to threshold times the maximum semi-variance, even if the level
confidence intervals exceed this amount.

... Optional arguments for future extensions.

Details

Returns a data.frame with columns x and y with rows min and max. See vignette('akde') for
an example of extent used to plot multiple UDs on the same scale.

Author(s)

C. H. Fleming

See Also

plot.telemetry, plot.variogram.

format Scientific formatting of numbers

Description

Functions for concisely representing dimensionful quantities and uncertain quantities.
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Usage

dimfig(data,dimension,thresh=1,...)

sigfig(est,VAR=NULL,SD=NULL,level=0.95,digits=2,...)

Arguments

data A numerical vector of dimensionful quantities represented in SI units.

dimension One of "length", "area", "time", "frequency", "speed", "diffusion", or
"mass".

thresh Threshold quantity for switching between units. E.g., 100 cm is represented as
1 m only if thresh>=1.

est Can be either confidence-interval estimates with rows (lower-limit,point-estimate,upper-
limit) or point estimates (with VAR or SD also specified).

VAR Variance in the sampling distribution of x.

SD Standard deviation in the sampling distribution of x.

level Confidence level for designating the numerical precision of the significant digits.

digits Number of significant digits to retain.

... Not currently used.

Details

dimfig chooses the set of units that provides the most concise representation for data, and sigfig
concisely represents statistical estimates with a fixed number of significant digits.

Value

dimfig returns a list with slots for the converted data and the name of the most concise units.
sigfig returns a character string that is formated with the specified number of significant digits.

Author(s)

C. H. Fleming.

See Also

%#%

Examples

# Load package and data
library(ctmm)
data(buffalo)
DATA <- buffalo$Cilla

GUESS <- ctmm.guess(DATA,interactive=FALSE)
# in general, you want to run ctmm.select instead
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FIT <- ctmm.fit(DATA,GUESS)

# raw summary (SI units)
summary(FIT,units=FALSE)

# default summary (concise units)
summary(FIT,units=TRUE)

# text-formatted summary
sigfig( summary(FIT)$CI )

gazelle Mongolian gazelle GPS dataset from the Mongolia’s Eastern Steppe.

Description

x-y projected GPS data on 36 Mongolian gazelle.

Usage

data("gazelle")

Format

A list of 36 telemetry objects.

References

C. H. Fleming, J. M. Calabrese, T. Mueller, K.A. Olson, P. Leimgruber, and W. F. Fagan. Data
from: From fine-scale foraging to home ranges: A semi-variance approach to identifying movement
modes across spatiotemporal scales. Dryad Digital Repository (2014) doi:10.5061/dryad.45157.

See Also

as.telemetry, plot.telemetry, buffalo, coati, jaguar, pelican, turtle, wolf.

Examples

# Load package and data
library(ctmm)
data("gazelle")

# Plot a gazelle's locations
plot(gazelle[[18]])

https://doi.org/10.5061/dryad.45157
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homerange Calculate a range distribution estimate

Description

Estimates the range distributions and suitability from telemetry data and a continuous-time move-
ment model.

Usage

homerange(data,CTMM,method="AKDE",...)

agde(data=NULL,CTMM=NULL,R=list(),variable="utilization",error=0.001,res=100,grid=NULL,
...)

suitability(data=NULL,CTMM=NULL,R=list(),level=0.95,grid=NULL,log=FALSE,...)

Arguments

data 2D timeseries telemetry data represented as a telemetry object.

CTMM A ctmm movement model from the output of ctmm.fit.

method Which range distribution method to use. Can be "AKDE" or "AGDE".

... Arguments passed to the method call or bandwidth.

R A named list of raster covariates if CTMM contains an RSF model

variable Not yet supported.

error Target probability error.

res Number of grid points along each axis, relative to the location covariance.

grid Grid specification via raster, UD, or list of arguments (See akde for details).

level Confidence level for output confidence intervals.

log Calculate the log(suitability).

Details

homerange is a wrapper function that calls either akde or agde. Please consult akde for further
details on method="AKDE".

suitability calculates a suitability raster from an rsf.fit object. Population RSF fit objects
calculated from mean will produce a suitability estimate of the population.

agde calculates autocorrelated Gaussian and RSF home-range areas.

Value

homerange and agde return a UD object. suitability returns a brick object.
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Author(s)

C. H. Fleming.

See Also

akde, raster,UD-method

intensity Compare empirical and theoretical intensity (resource-selection) func-
tions [IN DEVELOPMENT]

Description

This function plots the empirical and theoretical intensity functions with respect to a covariate of
interest.

Usage

intensity(data,UD,RSF,R=list(),variable=NULL,empirical=FALSE,level=0.95,ticks=TRUE,
smooth=TRUE,interpolate=TRUE,...)

Arguments

data A telemetry object.
UD A UD object generated by akde from the same telemetry object as data. If

weights were optimized in akde, then they will be adopted by intensity.
RSF An iRSF model-fit object from rsf.fit or rsf.select.
R A named list of rasters or time-varying raster stacks [NOT TESTED] to fit Pois-

son regression coefficients to (under a log link).
variable Variable of interest from names(R).
empirical Plot an empirical estimate of log λ [IN DEVELOPMENT].
level Confidence level for intensity function estimates.
ticks Demark used resource values atop the plot.
smooth Apply location-error smoothing to the tracking data before regression.
interpolate Whether or not to interpolate raster values during extraction.
... Arguments passed to plot.

Details

With resepct to the Poisson point process likelihood L(λ) = λ(x,y)∫∫
λ(x′,y′) dx′dy′ , the formula object

of a ctmm iRSF model corresponds to the covariate dependence of log(λ), which is typically of
the form β · R. intensity plots both empirical (black) and theoretical (red) estimates of the
log-intensity (or log-selection) function log(λ) as a function of the covariate variable, which
provides a visualization of what the true formula looks like and how the fitted model compares.
The empirical estimate is semi-parametric, in that it assumes that RSF is correct for all variables
other than variable.
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Note

Only relative differences in log(λ) are meaningful.

See Also

rsf.fit.

jaguar Jaguar data from the Jaguar movement database.

Description

x-y projected GPS data on 4 jaguar. Please cite Morato et al (2018) when publishing with these
data.

Usage

data("jaguar")

Format

A list of 4 telemetry objects.

References

R. G. Morato et al, “Jaguar movement database: a GPS-based movement dataset of an apex predator
in the Neotropic”, Ecology, 99:7, 1691-1691 (2018) doi:10.1002/ecy.2379.

See Also

as.telemetry, plot.telemetry, buffalo, coati, gazelle, pelican, turtle, wolf.

Examples

# Load package and data
library(ctmm)
data("jaguar")

# Plot all jaguar locations
plot(jaguar,col=rainbow(length(jaguar)))

https://doi.org/10.1002/ecy.2379
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Log Log transformation of parameter estimates and their uncertainties

Description

Methods for log transforming individual parameter estimates and their uncertainty estimates for
use in meta-analytic regression, and then back-transforming mean-log parameter estimates back to
mean parameter estimates.

Usage

Log(CTMM,EST=NULL,variable="area",debias=TRUE,...)

Exp(est,VAR.est=0,VAR=0,VAR.VAR=0,variable="area",debias=TRUE,level=0.95,units=TRUE,...)

Arguments

CTMM A list of ctmm objects, UD objects, UD summary objects, or speed objects.

EST For future use.

variable Can be "area", "diffusion", "speed", "tau position", or "tau velocity".

debias Apply logχ2 and logχ bias corrections if TRUE.

... Further arguments passed.

est Point estimate of the mean log-parameter.

VAR.est Uncertainty in the mean log-parameter estimate (square standard error).

VAR Variance in the log-parameters.

VAR.VAR Uncertainty in the log-paramter variance estimate (square standard error).

level Confidence level for parameter estimates.

units Convert result to natural units.

Value

Log returns a list with two slots, log and VAR.log, corresponding to the point estimates and variance
estimates of the logged variables.

Exp returns a confidence intervals for the back-transformed mean parameter estimate.

Author(s)

C. H. Fleming.

See Also

meta, mean.
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Examples

# load package and data
library(ctmm)
data(buffalo)

# fit movement models
FITS <- AKDES <- list()
for(i in 1:length(buffalo))
{

GUESS <- ctmm.guess(buffalo[[i]],interactive=FALSE)
# use ctmm.select unless you are certain that the selected model is OUF
FITS[[i]] <- ctmm.fit(buffalo[[i]],GUESS)

}

# calculate AKDES on a consistent grid
AKDES <- akde(buffalo,FITS)

# extract 95% areas
AREAS <- lapply(AKDES,summary)

# log transform for further meta-analysis
LOG <- Log(AREAS)

LOG

mean.ctmm Average movement models and autocorrelated kernel density estimates

Description

These functions calculate population averages of continuous-time movement models and utilization
distributions.

Usage

## S3 method for class 'ctmm'
mean(x,formula,weights=NULL,sample=TRUE,debias=TRUE,IC="AIC",trace=TRUE,...)

## S3 method for class 'UD'
mean(x,weights=NULL,sample=TRUE,...)

Arguments

x A list of ctmm objects calculated in the same projection or UD objects calculated
on the compatible grids.

formula A formula object with the predictors of a functional response for RSF models
[IN DEVELOPMENT].
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weights A vector of numeric weights with the same length as x, specifying the relative
frequency of each distribution in x.

sample x represents a sample of a larger population if TRUE, or the entire statistical
population if FALSE.

debias Include log−χ2 and REML bias corrections.

IC Model selection criterion for the anisotropy of the distribution of mean locations
and covariance matrices.

trace Report location and autocovariance model selection results.

... Additional arguments for future use.

Details

When applied to a list of ctmm objects, mean calculates an average movement model with populaton
variability estimates. The population model is taken to be multivariate normal and log-normal. The
population mean location represents an arithmetic mean, while the population mean home-range
areas, RMS speeds, and diffusion rates represent geometric means. Location-error estimates are not
correctly averaged yet.

When applied to a list of UD objects, mean calculates a weighted average of autocorrelated ker-
nel density home-range estimates from akde. The point estimates are correct, but the confidence-
interval calculation is not yet complete.

By default, uniform weights are used (weights=rep(1,length(x))). This can be sensible for
averaging over individuals. For averaging over periods of time, users should consider weighting
by the proportion of time spent in each distribution. For example, if an animal spends 4 months in
its winter range, x[[1]], and 7 months in its summer range, x[[2]], then the annual range (sans
migration corridor) would be calculated with weights=c(4,7).

All UDs need to be calculated on the same grid (see overlap for an example).

Value

When applied to a list of ctmm objects, mean returns a ctmm object with additional population vari-
ability parameter estimates.

When applied to a list of UD objects, mean returns a UD object: a list with the sampled grid line
locations r$x and r$y, the extent of each grid cell dr, the probability density and cumulative distri-
bution functions evaluated on the sampled grid locations PDF & CDF, the optimal bandwidth matrix
H, and the effective sample size of the data in DOF.H.

Author(s)

C. H. Fleming

See Also

akde, ctmm.select
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mean.variogram Compute a number-weighted average of variogram objects

Description

This function takes a list of variogram objects and calculates its number-weighted average vari-
ogram.

Usage

## S3 method for class 'variogram'
mean(x,...)

Arguments

x A variogram object or list of such objects to be averaged.

... Additional variograms if specified individually.

Value

Returns a variogram object which is a dataframe containing the lag, the semi-variance estimate at
that lag, and the approximate degrees of freedom associated with the semi-variance estimate.

Note

Variogram averaging should only be used when there is a degree of similarity across individual
variograms.

Author(s)

J. M. Calabrese and C. H. Fleming

References

C. H. Fleming, J. M. Calabrese, T. Mueller, K.A. Olson, P. Leimgruber, W. F. Fagan, “From fine-
scale foraging to home ranges: A semi-variance approach to identifying movement modes across
spatiotemporal scales”, The American Naturalist, 183:5, E154-E167 (2014) doi:10.1086/675504.

See Also

plot.variogram, variogram.

https://doi.org/10.1086/675504
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Examples

# Load package and data
library(ctmm)
data(buffalo)

# Calculate a list of variograms for all similar individuals in the dataset
# the 4th buffalo has a different sampling rate
SVFS <- lapply( buffalo[-4] , variogram )
# alternatively, we could variogram all at coarsest scale with variogram option dt

# Calculate the average variogram
SVF <- mean(SVFS)

# Plot the mean variogram
plot(SVF)

meta Meta-analysis of movement-model parameters

Description

These functions estimate population-level mean parameters from individual movement models and
related estimates, including AKDE home-range areas, while taking into account estimation uncer-
tainty.

Usage

meta(x,variable="area",level=0.95,level.UD=0.95,method="MLE",IC="AICc",boot=FALSE,
error=0.01,debias=TRUE,verbose=FALSE,units=TRUE,plot=TRUE,sort=FALSE,mean=TRUE,
col="black",...)

funnel(x,y,variable="area",precision="t",level=0.95,level.UD=0.95,...)

Arguments

x A named list of ctmm movement-model objects, UD objects, UD summary output,
speed output, or 2×2 overlap objects constituting a sampled population, or a
named list of such lists, with each constituting a sampled population.

y An optional named list of telemetry objects for the funnel-plot precision
variable.

variable Biological “effect” variable of interest for ctmm object arguments. Can be "area",
"diffusion", "speed", "tau position", or "tau velocity".

precision Precision variable of interest. Can be "t" for sampling time period or time
interval, "n" for nominal sample size, "N" or "DOF" for effective sample size.

level Confidence level for parameter estimates.

level.UD Coverage level for home-range estimates. E.g., 50% core home range.
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method Statistical estimator used—either maximum likelihood estimation based ("MLE")
or approximate ‘best linear unbiased estimator’ ("BLUE")—for comparison pur-
poses.

IC Information criterion to determine whether or not population variation can be
estimated. Can be "AICc", AIC, or "BIC".

boot Perform a parametric bootstrap for confidence intervals and first-order bias cor-
rection if debias=TRUE.

error Relative error tolerance for parametric bootstrap.

debias Apply Bessel’s inverse-Gaussian correction and various other bias corrections if
method="MLE", REML if method="BLUE", and an additional first-order correc-
tion if boot=TRUE.

verbose Return a list of both population and meta-population analyses if TRUE and x is a
list of population lists. Also returns p-values and geometric mean ratios.

units Convert result to natural units.

plot Generate a meta-analysis forest plot.

sort Sort individuals by their point estimates in forest plot.

mean Include population mean estimate in forest plot.

col Color(s) for individual labels and error bars.

... Further arguments passed to plot or meta.

Details

meta employs a custom χ2-IG hierarchical model to calculate debiased population mean estimates
of positive scale parameters, including home-range areas, diffusion rates, mean speeds, and auto-
correlation timescales. Model selection is performed between the χ2-IG population model (with
population mean and variance) and the Dirac-δ population model (population mean only). Pop-
ulation “coefficient of variation” (CoV) estimates are also provided. Further details are given in
Fleming et al (2022).

Value

If x constitutes a sampled population, then meta returns a table with rows corresponding to the
population mean and coefficient of variation.

If x constitutes a list of sampled populations, then meta returns confidence intervals on the popula-
tion mean variable ratios.

Note

The AICc formula is approximated via the Gaussian relation.

Confidence intervals depicted in the forest plot are χ2 and may differ from the output of summary()
in the case of mean speed and timescale parameters with small effective sample sizes.

As mean ratio estimates are debiased, reciprocal estimates can differ slightly with moderate-to-large
effective sample sizes (or substantially with small effective sample sizes). verbose=TRUE will also
return the geometric mean, which is symmetric, but biased outside of the logarithm.
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Author(s)

C. H. Fleming.

References

C. H. Fleming, I. Deznabi, S. Alavi, M. C. Crofoot, B. T. Hirsch, E. P. Medici, M. J. Noonan, R.
Kays, W. F. Fagan, D. Sheldon, J. M. Calabrese, “Population-level inference for home-range areas”,
Methods in Ecology and Evolution 13:5 1027–1041 (2022) doi:10.1111/2041210X.13815.

See Also

akde, cluster, ctmm.fit.

Examples

# load package and data
library(ctmm)
data(buffalo)

# fit movement models
FITS <- AKDES <- list()
for(i in 1:length(buffalo))
{

GUESS <- ctmm.guess(buffalo[[i]],interactive=FALSE)
# use ctmm.select unless you are certain that the selected model is OUF
FITS[[i]] <- ctmm.fit(buffalo[[i]],GUESS)

}

# calculate AKDES on a consistent grid
AKDES <- akde(buffalo,FITS)

# color to be spatially distinct
COL <- color(AKDES,by='individual')

# plot AKDEs
plot(AKDES,col.DF=COL,col.level=COL,col.grid=NA,level=NA)

# meta-analysis of buffalo home-range areas
meta(AKDES,col=c(COL,'black'),sort=TRUE)

# funnel plot to check for sampling bias
funnel(AKDES,buffalo)

npr Calculate a non-parametric regression surface

Description

This function estimates the mean value of an annotated covariate as a function of location, using
non-parametric regression.

https://doi.org/10.1111/2041-210X.13815
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Usage

npr(data,UD,variable="speed",normalize=FALSE,debias=TRUE,error=0.001,...)

Arguments

data 2D timeseries telemetry data represented as a telemetry object or list of ob-
jects.

UD A UD object from the output of akde.

variable Variable for mean estimation. Can be a column of data.

normalize Consider variable as providing a weighted probability distribution.

debias Correct for oversmoothing if normalize=TRUE.

error Target probability error.

... Arguments passed to akde.

Value

Returns a UD object.

Author(s)

C. H. Fleming.

See Also

akde, occurrence

Examples

# Load package and data
library(ctmm)
data(buffalo)
DATA <- buffalo$Cilla

# calculate fit guess object
GUESS <- ctmm.guess(DATA,interactive=FALSE)
# in general, you should be running ctmm.select here instead of ctmm.fit
FIT <- ctmm.fit(DATA,GUESS)

# Compute akde object
UD <- akde(DATA,FIT)

# compute revisitation distribution
RD <- revisitation(DATA,UD)

# Plot data with revisitation distribution
plot(DATA,RD)
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occurrence Calculate a Kriged occurrence distribution estimate

Description

This function calculates an occurrence distribution from telemetry data and a continuous-time
movement model.

Usage

occurrence(data,CTMM,R=list(),SP=NULL,SP.in=TRUE,H=0,variable="utilization",res.time=10,
res.space=10,grid=NULL,cor.min=0.05,dt.max=NULL,buffer=TRUE,...)

Arguments

data A telemetry object or list of telemetry objects.
CTMM A ctmm movement model, as from the output of ctmm.select, or a list of ctmm

objects.
R A named list of raster covariates if CTMM contains an RSF model.
SP SpatialPolygonsDataFrame object for enforcing hard boundaries.
SP.in Locations are assumed to be inside the SP polygons if SP.in=TRUE and outside

of SP if SP.in=FALSE.
H Optional additional bandwidth matrix for future use.
variable Either "utilization" or "revisitation". Only utilization is accurately esti-

mated.
res.time Number of temporal grid points per median timestep.
res.space Number of grid points along each axis, relative to the average diffusion (per

median timestep) from a stationary point.
grid Optional grid specification via raster, UD, or list of arguments (See akde for

details).
cor.min Velocity correlation threshold for skipping gaps.
dt.max Maximum absolute gap size (in seconds) for Kriging interpolation. If left NULL,

the median of diff(data$t) will be used.
buffer Buffer the observation period, according to the minimum gap specified by cor.min

and dt.max, to include more probable locations if possible.
... Not used.

Details

The arguments cor.min or dt.max are used to prevent the interpolation of large gaps, which would
bias the estimate to more resemble the movement model than the data. Because cor.min can
produce an empty range with fractal movement models, the larger of the two rules is employed for
interpolation.

If buffer=TRUE, then the data are also extrapolated according to the minimum of the two rules
(cor.min and dt.max) which is limited to cases where persistence of motion is modeled.
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Value

Returns a UD object containing the sampled grid line locations x and y, the probability density and
cumulative distribution functions evaluated on the sampled grid locations PDF & CDF, the optional
bandwidth matrix H, and the area of each grid cell dA.

Note

Large gaps have a tendency to slow down computation and blow up the estimate. This can be
avoided with the cor.min or dt.max arguments.

In the case of coarse grids, the value of PDF in a grid cell actually corresponds to the average
probability density over the entire rectangular cell.

Prior to ctmm v0.5.6, cor.min referred to the location correlation, with a default of 50%. In ctmm
v0.5.6 and above, cor.min refers to the velocity correlation, with a default of 5%.

Author(s)

C. H. Fleming.

References

C. H. Fleming, W. F. Fagan, T. Mueller, K. A. Olson, P. Leimgruber, J. M. Calabrese, “Estimating
where and how animals travel: An optimal framework for path reconstruction from autocorrelated
tracking data”, Ecology, 97:3, 576-582 (2016) doi:10.1890/151607.1.

C. H. Fleming, D. Sheldon, E. Gurarie, W. F. Fagan, S. LaPoint, J. M. Calabrese, “Kálmán fil-
ters for continuous-time movement models”, Ecological Informatics, 40, 8-21 (2017) doi:10.1016/
j.ecoinf.2017.04.008.

See Also

akde, raster,UD-method

Examples

# Load package and data
library(ctmm)
data(buffalo)
Cilla <- buffalo$Cilla

GUESS <- ctmm.guess(Cilla,interactive=FALSE)
FIT <- ctmm.fit(Cilla,GUESS)

# Compute occurence distribution
UD <- occurrence(Cilla,FIT)

# Plot occurrence UD
plot(UD,col.level=NA)

https://doi.org/10.1890/15-1607.1
https://doi.org/10.1016/j.ecoinf.2017.04.008
https://doi.org/10.1016/j.ecoinf.2017.04.008
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optimizer Minimize a function

Description

This function serves as a wrapper around optimize, optim, and ctmm’s partial-Newton optimiza-
tion routine, with standardized arguments and return values. It finds the optimal parameters that
minimize a function, whether it be a cost, loss, risk, or negative log-likelihood function.

Usage

optimizer(par,fn,...,method="pNewton",lower=-Inf,upper=Inf,period=FALSE,reset=identity,
control=list())

Arguments

par Initial parameter guess.

fn Function to be minimized with first argument par and optional argument zero
(see ’Details’ below).

... Optional arguments fed to fn.

method Optimization algorithm (see ’Details’ below).

lower Lower bound for parameters.

upper Upper bound for parameters.

period Period of circular parameters if not FALSE.

reset Optional function to re-center parameters, if symmetry permits, to prevent nu-
merical underflow.

control Argument list for the optimization routine (see ’Details’ below).

Details

Only method='pNewton' will work in both one dimension and multiple dimensions. Any other
method argument will be ignored in one dimension, in favor of optimize with a backup evaluation
of nlm (under a log-link) for cases where optimize is known to fail. In multiple dimensions,
methods other than pNewton include those detailed in optim.

method='pNewton' is ctmm’s partial-Newton optimizer, which is a quasi-Newton method that is
more accurate than BFGS-based methods. In short, while BFGS-based methods provide a single
rank-1 update to the Hessian matrix per iteration, the partial-Newton algorithm provides length(par)+1
rank-1 updates to the Hessian matrix per iteration, at the same computational cost. Furthermore,
length(par) of those updates have better numerical precision than the BFGS update, meaning
that they can be used at smaller step sizes to obtain better numerical precision. The pNewton opti-
mizer also supports several features not found in other R optimizers: the zero argument, the period
argument, and parallelization.

The zero argument is an optional argument in fn supported by method='pNewton'. Briefly, if you
rewrite a negative log-likelihood of the form fn =

∑n
i=1 fni as fn =

∑n
i=1(fni−zero/n)+zero,
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where zero is the current estimate of the minimum value of fn, then the sum becomes approx-
imately "zeroed" and so the variance in numerical errors caused by the difference in magnitude
between fn and fn_i is mitigated. In practice, without the zero argument, log-likelihood functions
grow in magnitude with increasing data and then require increasing numerical precision to resolve
the same differences in log-likelihood. But absolute differences in log-likelihoods (on the order of
1) are always important, even though most optimization routines more naturally consider relative
differences as being important.

The period argument informs method='pNewton' if parameters is circular, such as with angles,
and what their periods are.

The control list can take the folowing arguments, with defaults shown:

precision=1/2 Fraction of machine numerical precision to target in the maximized likelihood
value. The optimal par will have half this precision. On most computers, precision=1 is
approximately 16 decimal digits of precision for the objective function and 8 for the optimal
par.

maxit=.Machine$integer.max Maximum number of iterations allowed for optimization.

parscale=pmin(abs(par),abs(par-lower),abs(upper-par)) The natural scale of the param-
eters such that variations in par on the order of parscale produce variations in fn on the
order of one.

trace=FALSE Return step-by-step progress on optimization.

cores=1 Perform cores evaluations of fn in parallel, if running in UNIX. cores<=0 will use all
available cores, save abs(cores). This feature is only supported by method='pNewton' and
is only useful if fn is slow to evaluate, length(par)>1, and the total number of parallel
evaluations required does not trigger fork-bomb detection by the OS.

Value

Returns a list with components par for the optimal parameters, value for the minimum value of fn,
and possibly other components depending on the optimization routine employed.

Note

method='pNewton' is very stringent about achieving its precision target and assumes that fn has
small enough numerical errors (permitting the use of argument zero) to achieve that precision
target. If the numerical errors in fn are too large, then the optimizer can fail to converge. ctmm.fit
standardizes its input data before optimization, and back-transforms afterwards, as one method to
minimize numerical errors in fn.

Author(s)

C. H. Fleming.

See Also

optim, optimize, nlm
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outlie Methods to facilitate outlier detection.

Description

Produces a data.frame of speed and distance estimates to analyze, as well as a plot highlighting
potential speed and distance outliers in telemetry data.

Usage

outlie(data,plot=TRUE,by='d',units=TRUE,...)

## S3 method for class 'outlie'
plot(x,level=0.95,units=TRUE,axes=c('d','v'),xlim=NULL,ylim=NULL,...)

Arguments

data telemetry object.

plot Output a plot highlighting high speeds (blue) and distant locations (red).

by Color and size side-effect plot points by 'd', 'v', 'dz', 'vz', for distance from
center, minimum speed, vertical distance from center, and minimum vertical
speed.

units Convert axes to natural units.

... Arguments passed to plot.

x outlie object to plot.

level Confidence level for error bars.

axes x-y axes to plot. Can be any of 't', 'd', 'v', 'dz', 'vz', for time, distance
from center, minimum speed, vertical distance from center, and minimum verti-
cal speed.

xlim x-axis plotting range in SI units.

ylim y-axis plotting range in SI units.

Details

If plot=TRUE in outlie(), intervals of high speed are highlighted with blue segments, while distant
locations are highlighted with red points.

When plotting the outlie object itself, ‘median deviation’ denotes distances from the geomet-
ric median, while ‘minimum speed’ denotes the minimum speed required to explain the location
estimate’s displacement as straight-line motion. Both estimates account for telemetry error and
condition on as few data points as possible. The speed estimates furthermore account for timestamp
truncation and assign each timestep’s speed to the most likely offending time, based on its other
adjacent speed estimate.

The output outlie object contains the above noted speed and distance estimates in a data.frame,
with rows corresponding to those of the input telemetry object.
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Value

Returns an outlie object, which is a data.frame of distance and speed information. Can also
produce a plot as a side effect.

Note

The speed estimates here are tailored for outlier detection and have poor statistical efficiency. The
predict and speed methods are appropriate for estimating speed (after outliers have been removed
and a movement model has been selected).

In ctmm v0.6.1 the UERE argument was deprecated. For uncalibrated data, the initial esitmates used
by outlie are now generated on import and stated by summary(uere(data)). These values not be
reasonable for arbitrary datasets.

Author(s)

C. H. Fleming.

References

C. H. Fleming et al, “A comprehensive framework for handling location error in animal tracking
data”, bioRxiv 2020.06.12.130195 (2020) doi:10.1101/2020.06.12.130195.

See Also

as.telemetry.

Examples

# Load package and data
library(ctmm)
data(turtle)

# look for outliers in a turtle
OUT <- outlie(turtle[[3]])

# look at the distribution of estimates
plot(OUT)

overlap Calculate the overlap between two stationary distributions

https://doi.org/10.1101/2020.06.12.130195


56 overlap

Description

This function calculates a useful measure of similarity between distributions known as the Bhat-
tacharyya coefficient in statistics and simply the fidelity or overlap in quantum and statistical me-
chanics. It is roughly speaking the ratio of the intersection area to the average individual area, but it
is a direct comparison between the density functions and does not require an arbitrary quantile to be
specified. When applied to ctmm objects, this function returns the overlap of the two Gaussian dis-
tributions. When applied to aligned UD objects with corresponding movement models, this function
returns the overlap of their (autocorrelated) kernel density estimates.

Usage

overlap(object,method="Bhattacharyya",level=0.95,debias=TRUE,...)

Arguments

object A list of ctmm fit or aligned UD objects to compare.

method Can be "Bhattacharyya" or "Encounter" (see Details below).

level The confidence level desired for the output.

debias Approximate debiasing of the overlap.

... Not currently used.

Details

The default method="Bhattacharyya" estimates the standard overlap measure
∫ ∫ √

p(x, y) q(x, y) dx dy
between the distributions p(x, y) and q(x, y), while method="encounter" estimates the non-standard
measure

∫ ∫
p(x,y) q(x,y) dx dy√∫ ∫

p(x′,y′)2 dx′dy′
∫ ∫

q(x′′,y′′)2 dx′′dy′′
, which has a numerator proportional to the uncor-

related encounter probability and UD overlap index (Tilberg and Dixon, 2022). Both measures lie
between 0 and 1, where 0 indicates no shared support and 1 indicates identical distributions.

Value

An object with slots DOF, containing the effective sample sizes, and CI containing a table of confi-
dence intervals on the overlap estimates. A value of 1 implies that the two distributions are identical,
while a value of 0 implies that the two distributions share no area in common.

Note

In ctmm v0.5.2, direct support for telemetry objects was dropped and the CTMM argument was
depreciated for UD objects, simplifying usage.

Uncertainties in the model fits are propagated into the overlap estimate under the approximation
that the Bhattacharyya distance is a chi-square random variable. Debiasing makes further approxi-
mations noted in Winner & Noonan et al (2018).

Author(s)

C. H. Fleming and K. Winner
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References

K. Winner, M. J. Noonan, C. H. Fleming, K. Olson, T. Mueller, D. Sheldon, J. M. Calabrese.
“Statistical inference for home range overlap”, Methods in Ecology and Evolution, 9:7, 1679-1691
(2018) doi:10.1111/2041210X.13027.

M. Tilberg, P. M. Dixon, “Statistical inference for the utilization distribution overlap index (UDOI)”,
Methods in Ecology and Evolution, 13:5, 1082-1092 (2022) doi:10.1111/2041210X.13813.

See Also

akde, ctmm.fit, distance, encounter

Examples

# Load package and data
library(ctmm)
data(buffalo)

# fit models for first two buffalo
GUESS <- lapply(buffalo[1:2], function(b) ctmm.guess(b,interactive=FALSE) )
# using ctmm.fit here for speed, but you should almost always use ctmm.select
FITS <- lapply(1:2, function(i) ctmm.fit(buffalo[[i]],GUESS[[i]]) )
names(FITS) <- names(buffalo[1:2])

# Gaussian overlap between these two buffalo
overlap(FITS)

# AKDE overlap between these two buffalo
# create aligned UDs
UDS <- akde(buffalo[1:2],FITS)
# evaluate overlap
overlap(UDS)

pd.solve Postive-definite matrix operations

Description

These functions provide matrix operations for positive-definite and positive-semidefinite matrices
(e.g., covariance matrices) that can better handle ill-conditioned matrices, which is a common prob-
lem in likelihood estimation with covariance models.

Usage

pd.solve(M,sym=TRUE,semi=TRUE,...)

pd.logdet(M,sym=TRUE,semi=TRUE,...)

pd.sqrtm(M,semi=TRUE,...)

https://doi.org/10.1111/2041-210X.13027
https://doi.org/10.1111/2041-210X.13813
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Arguments

M A square matrix.

sym Assume the matrix to be symmetric.

semi Assume the matrix to only be positive semidefinite (variances can be zero),
rather than strictly positive definite (variances must be positive).

... Optional arguments to other functions, such as qr.solve.

Details

If semi=FALSE, all true variances are assumed to be positive and any numerically estimated vari-
ances that fall below machine precision are extrapolated from the numerically estimated variances
that fall above machine precision.

Infinite variances can be exactly handled, as long as they are not correlated with finite variances.

Value

pd.solve returns the matrix inverse, pd.logdet returns the logarithm of the determinant, and
pd.sqrtm returns the square-root matrix.

Author(s)

C. H. Fleming.

See Also

qr.solve, det

pelican Brown Pelican GPS and ARGOS data.

Description

GPS and ARGOS data on a single brown pelican (Pelecanus occidentalis). Please contact Autumn-
Lynn Harrison (HarrisonAL@si.edu) if you want to publish with these data.

Funding for Brown Pelican tracking was provided by the Friends of the National Zoo Conserva-
tion Research Grant and ConocoPhillips Global Signature Program. Field support provided by D.
Brinker.

Usage

data("pelican")

Format

A list of 2 telemetry objects.
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See Also

as.telemetry, plot.telemetry, buffalo, coati, gazelle, jaguar, turtle, wolf.

Examples

# Load package and data
library(ctmm)
data("pelican")
names(pelican)

# Plot all sampled locations
plot(pelican,col=c('blue','red'))

periodogram Calculate the Lomb-Scargle periodogram of animal-tracking data

Description

This function calculates isotropic Lomb-Scargle periodogram (LSP, Scargle, 1982) from a telemetry
object. One of two algorithms is used. The slow O(n2) algorithm vectorizes the exact relations of
Scargle (1982), while the fast O(n log n) algorithm uses the FFT method described in Péron &
Fleming et al (2016). The latter method is exact if the data are evenly scheduled, permitting gaps,
and otherwise it can be made arbitrarily precise via the res.time option.

Usage

periodogram(data,CTMM=NULL,dt=NULL,res.freq=1,res.time=1,fast=NULL,axes=c("x","y"))

## S3 method for class 'periodogram'
plot(x,max=FALSE,diagnostic=FALSE,col="black",transparency=0.25,grid=TRUE,...)

Arguments

data telemetry data object or list of such objects.

CTMM An optional ctmm model object for specifying the mean.

dt Sampling interval for frequency cutoff.

res.freq Multiplier to inflate the frequency resolution.

res.time Integer multiplier to inflate the temporal resolution. Useful when fast>0 and
the sampling rate is variable.

fast Use the exact algorithm if FALSE, the FFT algorithm if TRUE, and further
inflate the frequency resolution to a power of two sample size if fast=2.

axes Array of axes to calculate an average (isotropic) variogram for.

x Output object of periodogram.

max Plot only the local maxima of the periodogram. Use only with res>1.

diagnostic Plot the sampling schedule’s periodogram to check for spurious periodicities.
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col Color of periodogram.

transparency Adds transparency to clustered data if greater than zero. Should be less than
one.

grid Whether or not to plot gridlines at common periodicities.

... Optional arguments fed to plot.

Details

If no dt is specified, the median sampling interval is used. This is typically a good assumption for
most data, even when there are gaps and this choice corresponds to the discrete Fourier transform
(DFT) periodogram for evenly-sampled data.

At default resolution the frequency grid interval is given by 1/(2*(range(data$t)+dt)) and the
frequency cutoff is given by 1/(2*dt), both in accordance with the DFT periodogram. Increasing
res.freq beyond res.freq=1 will make for a smooth periodogram, but sequential frequencies will
be highly correlated. The max=TRUE option to plot.periodogram may be useful for res.freq>1.
Increasing res.time beyond res.time=1 is helpful if there is variability in the sampling rate and
fast>0.

If a CTMM argument is provided, the ML mean will be detrended from the data prior to calculating
the periodogram. Otherwise, the sample mean will be detrended.

If a list of telemetry objects are fed into periodogram, then a mean periodogram object will be
returned with the default dt and base frequency resolution selected on a worst case basis according
to the method described by Péron & Fleming et al (2016).

Value

Returns a periodogram object (class periodogram) which is a dataframe containing the frequency,
f and the Lomb-Scargle periodogram at that frequency, LSP.

Note

The LSP is totally inappropriate if you in any way alter the sampling rate within the dataset. Stick
with variograms in that case. There is a diagnostic option in plot.periodogram that can check
for spurious periodicities that result from an autocorrelated sampling schedule. This plot will not
contain any periodicities if the LSP is appropriate.

res.time>1 relies on Lagrange interpolation of the sinusoids (not the data), which can suffer from
Runge’s phenomena. periodogram tests for an invalid result and can fail with an error message.
For whatever reason, this more frequently seems to happen when res.time=3.

Author(s)

C. H. Fleming and G. Péron

References

J. D. Scargle, “Studies in astronomical time-series analysis. II. Statistical aspects of spectral anal-
ysis of unevenly-sampled data”, The Astrophysical Journal, 263, 835-853 (1952) doi:10.1086/
160554.

https://doi.org/10.1086/160554
https://doi.org/10.1086/160554
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G. Péron, C. H. Fleming, R. C. de Paula, J. M. Calabrese, “Uncovering periodic patterns of space
use in animal tracking data with periodograms, including a new algorithm for the Lomb-Scargle
periodogram and improved randomization tests”, Movement Ecology, 4:19 (2016) doi:10.1186/
s4046201600847.

Examples

#Load package and data
library(ctmm)
data(wolf)

#Extract movement data for a single animal
DATA <- wolf$Tay

#Calculate periodogram (fast==2 for a speedy example)
#There is some variability in the sampling frequency, so we increase res.time
LSP <- periodogram(DATA,fast=2,res.time=2)

#Plot the periodogram
plot(LSP,max=TRUE)

plot.telemetry Plotting methods for telemetry objects

Description

Produces simple plots of telemetry objects, possibly overlayed with a Gaussian ctmm movement
model or a UD utilization distribution.

Usage

plot(x,y,...)

## S3 method for class 'telemetry'
plot(x,CTMM=NULL,UD=NULL,col.bg="white",cex=NULL,col="red",lwd=1,pch=1,type='p',

error=TRUE,transparency.error=0.25,velocity=FALSE,DF="CDF",col.UD="blue",
col.grid="white",labels=NULL,level=0.95,level.UD=0.95,convex=FALSE,col.level="black",
lwd.level=1,SP=NULL,border.SP=TRUE,col.SP=NA,R=NULL,col.R="green",legend=FALSE,
fraction=1,xlim=NULL,ylim=NULL,ext=NULL,units=TRUE,add=FALSE,...)

## S4 method for signature 'list'
zoom(x,...)

## S4 method for signature 'telemetry'
zoom(x,fraction=1,...)

## S4 method for signature 'UD'
zoom(x,fraction=1,...)

https://doi.org/10.1186/s40462-016-0084-7
https://doi.org/10.1186/s40462-016-0084-7
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Arguments

x telemetry, ctmm or UD object, or list of such objects.

y Unused option.

CTMM Optional Gaussian ctmm movement model from the output of ctmm.fit or list
of such objects.

UD Optional UD object such as from the output of akde or list of such objects.

col.bg Background color

cex Relative size of plotting symbols. Only used when error=FALSE, because error=TRUE
uses the location-error radius instead of cex.

col Color option for telemetry data. Can be an array or list of arrays.

lwd Line widths of telemetry points.

pch Plotting symbol. Can be an array or list of arrays.

type How plot points are connected. Can be an array.

error Plot error circles/ellipses if present in the data. error=2 will fill in the circles
and error=3 will plot densities instead. error=FALSE will disable this feature.

transparency.error

Transparency scaling for erroneous locations when error=1:2. trans=0 dis-
ables transparancy. Should be no greater than 1.

velocity Plot velocity vectors if present in the data.

DF Plot the maximum likelihood probability density function "PDF" or cumulative
distribution function "CDF".

col.UD Color option for the density function. Can be an array.

col.grid Color option for the maximum likelihood akde bandwidth grid. col.grid=NA
will disable the plotting of the bandwidth grid.

labels Labels for UD contours. Can be an array or list of arrays.

level Confidence levels placed on the contour estimates themselves. I.e., the above
50% core home-range area can be estimated with 95% confidence via level=0.95.
level=NA will disable the plotting of confidence intervals.

level.UD Coverage level of Gaussian ctmm model or UD estimate contours to be displayed.
I.e., level.UD=0.50 can yield the 50% core home range within the rendered
contours.

convex Plot convex coverage-area contours if TRUE. By default, the highest density re-
gion (HDR) contours are plotted. convex=1 will plot the level.UD convex area,
while convex=2 will plot the convex hull of the level.UD HDR coverage area.

col.level Color option for home-range contours. Can be an array.

lwd.level Line widths of UD contours.

SP SpatialPolygonsDataFrame object for plotting a shapefile base layer.

border.SP Color option for shapefile polygon boundaries.

col.SP Color option for shapefile polygon regions.

R Background raster, such as habitat suitability.
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col.R Color option for background raster.

legend Plot a color legend for background raster.

fraction Quantile fraction of the data, Gaussian ctmm, or UD range to plot, whichever is
larger.

xlim The x limits c(x1, x2) of the plot (in SI units).

ylim The y limits c(y1, y2) of the plot (in SI units).

ext Plot extent alternative to xlim and ylim (see extent).

units Convert axes to natural units.

add Setting to TRUE will disable the unit conversions and base layer plot, so that
plot.telemetry can be overlayed atop other outputs more easily.

... Additional options passed to plot.

Details

Confidence intervals placed on the ctmm Gaussian home-range contour estimates only represent
uncertainty in the area’s magnitude and not uncertainty in the mean location, eccentricity, or ori-
entation angle. For akde UD estimates, the provided contours also only represent uncertainty in the
magnitude of the area. With akde estimates, it is also important to note the scale of the bandwidth
and, by default, grid cells are plotted with akde contours such that their length and width matches
that of a bandwidth kernels’ standard deviation in each direction. Therefore, this grid provides a
visual approximation of the kernel-density estimate’s “resolution”. Grid lines can be disabled with
the argument col.grid=NA.

Value

Returns a plot of x vs. y, and, if specified, Gaussian ctmm distribution or UD. akde UD plots also
come with a standard resolution grid. zoom includes a zoom slider to manipulate fraction.

Note

If xlim or ylim are provided, then the smaller or absent range will be expanded to ensure asp=1.

Author(s)

C. H. Fleming.

See Also

akde, ctmm.fit, plot, SpatialPoints.telemetry.

Examples

# Load package and data
library(ctmm)
data(buffalo)

# Plot the data
plot(buffalo,col=rainbow(length(buffalo)))
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plot.variogram Plotting methods for variogram objects.

Description

Produces simple plots of varigram objects (semi-variance vs. time lag) and model semi-variance
functions, with approximate confidence intervals around the semi-variance estimates.

Usage

## S3 method for class 'variogram'
plot(x,CTMM=NULL,level=0.95,units=TRUE,fraction=0.5,col="black",col.CTMM="red",xlim=NULL,

ylim=NULL,ext=NULL,...)

## S4 method for signature 'variogram'
zoom(x,fraction=0.5,...)

Arguments

x A variogram object calculated using variogram.

CTMM A ctmm movement model object in the same format as the output of ctmm.fit
or variogram.fit.

level Confidence level of confidence bands (95% default CIs). Can be an array.

units Convert axes to natural units.

fraction The proportion of the variogram object, variogram, that will be plotted. By
convention, half is shown. The tail end is generally garbage.

col Color for the empirical variogram. Can be an array.

col.CTMM Color for the model. Can be an array.

xlim Range of lags to plot (in SI units).

ylim Range of semi-variance to plot (in SI units).

ext Plot extent alternative to xlim and ylim (see extent).

... Additional plot function parameters.

Value

Returns a plot of semi-variance vs. time lag, with the empirical variogram in black and the ctmm
semi-variance function in red if specified. zoom includes a log-scale zoom slider to manipulate
fraction.

Note

The errors of the empirical variogram are correlated. Smooth trends are not necessarily significant.
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Author(s)

J. M. Calabrese and C. H. Fleming

References

C. H. Fleming, J. M. Calabrese, T. Mueller, K.A. Olson, P. Leimgruber, W. F. Fagan. From fine-
scale foraging to home ranges: A semi-variance approach to identifying movement modes across
spatiotemporal scales. The American Naturalist, 183:5, E154-E167 (2014) doi:10.1086/675504.

See Also

correlogram, ctmm.fit, plot, variogram, variogram.fit.

Examples

# Load package and data
library(ctmm)
data(buffalo)

# Extract movement data for a single animal
Cilla <- buffalo$Cilla

# Calculate variogram
SVF <- variogram(Cilla)

# Plot the variogram
plot(SVF)

projection Projection

Description

Functions to manipulate the coordinate reference system (CRS) of ctmm objects

Usage

## S4 method for signature 'telemetry'
projection(x,asText=TRUE)

## S4 method for signature 'ctmm'
projection(x,asText=TRUE)

## S4 method for signature 'UD'
projection(x,asText=TRUE)

## S4 method for signature 'list'
projection(x,asText=TRUE)

https://doi.org/10.1086/675504
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## S4 method for signature 'NULL'
projection(x,asText=TRUE)

## S4 replacement method for signature 'telemetry'
projection(x) <- value

## S4 replacement method for signature 'ctmm'
projection(x) <- value

## S4 replacement method for signature 'list'
projection(x) <- value

## S3 method for class 'telemetry'
median(x,na.rm=FALSE,...)

compass(loc=NULL,cex=3,...)

Arguments

x A telemetry, ctmm, or UD object.

asText If TRUE, the projection is returned as text. Otherwise a CRS object is returned.

value Projection to apply. Can also be a data.frame of longitude-latitude foci.

na.rm Not used.

... Arguments passed to Gmedian or text.

loc Optional two-dimensional coordinates (in meters) at which to draw a north-
facing compass needle.

cex Relative size of compass.

Details

projection(x) returns the projection information from ctmm object x, while projection(x) <-
value applies the projection value to object x. median(x) returns the ellipsoidal geometric median
of a telemetry object. compass(c(x,y)) plots a north-pointing compass needle at the coordinates
(x, y).

Note

Plotting UTF-8 chracters in a PDF, like the compass needle, requires specifying a compatible font
family. For example:

library(ctmm)
data(buffalo)
cairo_pdf(file="buffalo.pdf",family="DejaVu Sans")
plot(buffalo[[1]])
compass()
dev.off()
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Author(s)

C. H. Fleming

See Also

as.telemetry.

Examples

# Load package and data
library(ctmm)
data(buffalo)

# Apply a 1-point projection that preserves North==up
projection(buffalo) <- median(buffalo)
plot(buffalo)
compass()

# Apply a 2-point projection safer for elongated disributions
projection(buffalo) <- median(buffalo,k=2)
# This is the default projection for ctmm
plot(buffalo)
compass()

residuals.ctmm Calculate model fit residuals and assess their autocorrelation

Description

These functions calculate the residuals of a CTMM or UERE calibration model, which should be
standardized and IID if the model correctly specified. A correlogram method is also provided to
assess autocorrelation. This function is analogous to acf, but can handle missing data and multiple
dimensions. Finally, mag calculates residual magnitudes, which is useful for comparing against
potential covariates.

Usage

## S3 method for class 'ctmm'
residuals(object,data,...)

## S3 method for class 'telemetry'
residuals(object,CTMM=NULL,...)

correlogram(data,dt=NULL,fast=TRUE,res=1,axes=c("x","y"),trace=TRUE)

mag(x,...)

## S3 method for class 'telemetry'
mag(x,axes=c('x','y'),...)
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Arguments

object ctmm model object or telemetry data object for calculating residuals.

data telemetry data object or data.frame with time column t and data columns
axes.

CTMM ctmm model object. If NULL, the data is treated as (calibrated) calibration data.

... Unused arguments.

dt Lag bin width. An ordered array will yield a progressive coarsening of the lags.
Defaults to the median sampling interval.

fast Use the lag-weighted algorithm if FALSE or the FFT algorithm if TRUE. The slow
algorithm outputs a progress bar.

res Increase the discretization resolution for irregularly sampled data with res>1.
Decreases bias at the cost of smoothness.

axes Array of axes for which to calculate residual correlogram or magnitudes.

trace Display a progress bar if fast=FALSE.

x telemetry object from the output of residuals.

Details

Given a telemetry dataset and ctmm model, residuals calculates the standardized residuals of the
Kalman filter, which can be tested for independence. The residuals object can then be plotted with
plot or fed into the correlogram method to test independence. Output of the correlogram can then
be plotted as well, though zoom is much more useful.

When calculating correlograms, minimizing bias is more important than producing a overall smooth
estimate. If fast=TRUE, then res needs to be large enough to resolve variability in the sampling
interval (missing data is permitted). E.g., if the sampling interval is set to 15 minutes, but can be off
by a minute or two, then res=15 is a good choice.

Value

residuals return a residual object (class telemetry, but flagged as residual) and correlogram
returns a correlogram object (class variogram, but flagged as an ACF).

Note

If the sampling schedule is irregular, permitting gaps, then the correlogram may not look good even
if the model is correctly specified. In this case the correlogram of the residuals should be compared
to the correlogram of simulated residuals, using "data" simulated from the fit model and with the
same sampling schedule.

Author(s)

C. H. Fleming
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References

C. H. Fleming, D. Sheldon, E. Gurarie, W. F. Fagan, S. LaPoint, J. M. Calabrese, “Kálmán fil-
ters for continuous-time movement models”, Ecological Informatics, 40, 8-21 (2017) doi:10.1016/
j.ecoinf.2017.04.008.

See Also

plot.variogram, variogram.

Examples

# Load package and data
library(ctmm)
data(buffalo)
Cilla <- buffalo$Cilla

# fit a model
GUESS <- ctmm.guess(Cilla,interactive=FALSE)
FIT <- ctmm.fit(Cilla,GUESS)

# calculate residuals
RES <- residuals(Cilla,FIT)

# scatter plot of residuals with 50%, 95%, and 99.9% quantiles
plot(RES,col.UD=NA,level.UD=c(.50,.95,0.999))

# calculate correlogram of residuals
# increase the res argument to account for sampling variability
ACF <- correlogram(RES,res=10)

# plot 4 day's worth of lags
plot(ACF[ACF$lag<=4 %#% 'day',],fraction=1)

revisitation Calculate an revisitation distribution estimate

Description

This function estimates the distribution of revisitations from telemetry data and a continuous-time
movement model.

Usage

revisitation(data,UD,debias=TRUE,error=0.001,...)

https://doi.org/10.1016/j.ecoinf.2017.04.008
https://doi.org/10.1016/j.ecoinf.2017.04.008
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Arguments

data 2D timeseries telemetry data represented as a telemetry object or list of ob-
jects.

UD A UD object from the output of akde.

debias Correct for oversmoothing.

error Target probability error.

... Arguments passed to akde.

Value

Returns a UD object.

Author(s)

C. H. Fleming.

See Also

akde, occurrence

Examples

# Load package and data
library(ctmm)
data(buffalo)
DATA <- buffalo$Cilla

# calculate fit guess object
GUESS <- ctmm.guess(DATA,interactive=FALSE)
# in general, you should be running ctmm.select here instead of ctmm.fit
FIT <- ctmm.fit(DATA,GUESS)

# Compute akde object
UD <- akde(DATA,FIT)

# compute revisitation distribution
RD <- revisitation(DATA,UD)

# Plot data with revisitation distribution
plot(DATA,RD)
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rsf.fit Fit integrated resource selection functions (iRSFs) with
autocorrelation-adjusted weighted likelihood

Description

This function fits integrated resource selection functions with autocorrelation-adjusted weights on
the RSF likelihood function, importance sampling, and iterative numerical convergence.

Usage

rsf.fit(data,UD,R=list(),formula=NULL,integrated=TRUE,level.UD=0.99,
reference="auto",debias=TRUE,smooth=TRUE,standardize=TRUE,integrator="MonteCarlo",

error=0.01,max.mem="1 Gb",interpolate=TRUE,trace=TRUE,...)

rsf.select(data,UD,R=list(),formula=NULL,verbose=FALSE,IC="AICc",trace=TRUE,...)

Arguments

data A telemetry object.

UD A UD object generated by akde from the same telemetry object as data. If
weights were optimized in akde, then they will be adopted by rsf.fit.

R A named list of rasters or time-varying raster stacks [NOT TESTED] to fit Pois-
son regression coefficients to (under a log link).

formula Formula object for log(λ) referencing the elements of R and columns of data
(see Details below). If not specified, a linear term will be included for every
element of R.

integrated Fit an integrated RSF model with simultaneously estimated spatial constraints.
integrated=FALSE is for comparison purposes only.

level.UD Coverage probability of UD to sample uniformly from if integrated=FALSE.
Can also be a pre-defined spatial polygon object.

reference When expanding categorical predictors into indicator variables, reference="auto"
will choose the most common predictor to be the reference category. Otherwise,
the reference category can be specified by this argument.

debias Apply a post-hoc bias correction to the spatial constraint parameters, and apply
bias corrections to the numerical log-likelihood estimates.

smooth Apply location-error smoothing to the tracking data before regression.

standardize For numerical stability, predictors are internally standardized, if standardize=TRUE
and no formula is specified. (The final outputs are not standardized.) Other-
wise, users are responsible for standardizing their predictors.

integrator Numerical integrator used for likelihood evaluation. Can be "MonteCarlo" or
"Riemann" (IN TESTING).

error Relative numerical error threshold for the parameter estimates and log-likelihood.
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max.mem Maximum amount of memory to allocate for availability sampling.

interpolate Whether or not to interpolate raster values during extraction.

trace Report progress on convergence (see Details).

verbose Returns all candidate models if TRUE. Otherwise, only the IC-best model is re-
turned.

IC Model selection criterion. Can be AIC, AICc, or BIC.

... Arguments passed to rsf.fit or optimizer.

Details

For autocorrelated tracking data, the relative weights of the log-likelihood used here are taken from
the output of akde, which are optimzed for non-parametric denstity estimation (if weights=TRUE,
and so are approximate here. The absolute weight of the data is taken to be the effective sample size
of the integrated spatial parameters, when estimated seperately.

Integrated resource selection functions simultaneously estimate the spatially constraining (availabil-
ity) parameters with the resource selection parameters, rather than first estimating the availability
parameters (usually via MCP) and then holding those parameters fixed—as known values—when
estimating the resource selection parameters. The “integrated” analysis reduces estimation bias, ex-
poses correlations in the resource and availability estimate uncertainties, and propagates the avail-
ability estimate uncertainties into the final outputs.

Instead of specifying a number of “available” points to sample and having an unknown amount of
numerical error to contend with, rsf.fit specifies an estimation target error and the number of
“available” points is increased until this target is met. Moreover, the output log-likelihood is that of
the continuous Poisson point process, which does not depend on the number of “available” points
that were sampled, though the numerical variance estimate is recorded in the VAR.loglike slot of
the fit object.

When trace=TRUE, a number of convergence estimates are reported, including the standard devia-
tion of the numerical error of the log-likelihood, SD[log(ℓ)], the most recent log-likelihood update,
dlog(ℓ), and the most recent (relative) parameter estimate updates dβ̂/SD[β̂].

The formula object determines the covariate dependence of log(λ) in the Poisson point process
likelihood L(λ) = λ(x,y)∫∫

λ(x′,y′) dx′dy′ , and can reference static rasters in R, time-dependent raster
stacks in R [NOT TESTED], and time-dependent effect modifiers in the columns of data, such as
provided by annotate. Any offset terms are applied under a log transformation (or multiplica-
tively to λ), and can be used to enforce hard boundaries, where offset(raster)=TRUE denotes
accesible points and offset(raster)=FALSE denotes inaccessible points [NOT TESTED]. Inter-
cept terms are ignored, as they generally do not make sense for individual Poisson point process
models. This includes terms only involving the columns of data, as they lack spatial dependence.

Categorical raster variables are expanded into indicator variables, according to the reference cat-
egory argument. Upon import via raster, categorical variables may need to be assigned with
as.factor, or else they may be interpreted as numerical variables.

Note

It is much faster to calculate all predictors ahead of time and specifying them in the R list than to
reference then in the formula argument, which will calculate them as needed, saving memory.
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AIC and BIC values for integrated=FALSE models do not include any penalty for the estimated
location and shape of the available area, and so their AIC and BIC values are expected to be worse
than reported.

Author(s)

C. H. Fleming and B. Reineking

References

J. M. Alston, C. H. Fleming, R. Kays, J. P. Streicher, C. T. Downs, T. Ramesh, B. Reineking,
& J. M. Calabrese, “Mitigating pseudoreplication and bias in resource selection functions with
autocorrelation-informed weighting”, Methods in Ecology and Evolution 14:2 643–654 (2023)
doi:10.1111/2041210X.14025.

See Also

ctmm.fit, intensity, optimizer, summary.ctmm.

sdm.fit Fit species distribution models (SDMs) [IN DEVELOPMENT]

Description

This function fits species distribution models, sampling density models, and integrated SDMs.

Usage

sdm.fit(data,R=list(),formula=NULL,area=NULL,reference="auto",standardize=TRUE,
integrator="MonteCarlo",error=0.01,max.mem="1 Gb",interpolate=TRUE,trace=TRUE,...)

sdm.select(data,R=list(),formula=NULL,area=NULL,verbose=FALSE,IC="AICc",trace=TRUE,...)

sdm.integrate(biased=NULL,bias=NULL,unbiased=NULL)

Arguments

data A telemetry object.

R A named list of rasters or time-varying raster stacks [NOT TESTED] to fit Pois-
son regression coefficients to (under a log link).

formula Formula object for log(λ) referencing the elements of R and columns of data
(see Details below). If not specified, a linear term will be included for every
element of R.

area A spatial polygon object defining the extent of the SDM. If left NULL, an inte-
grated Gaussian model will be used to define the extent of the SDM, which can
be a very bad model for geographic ranges.

https://doi.org/10.1111/2041-210X.14025
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reference When expanding categorical predictors into indicator variables, reference="auto"
will choose the most common predictor to be the reference category. Otherwise,
the reference category can be specified by this argument.

standardize For numerical stability, predictors are internally standardized, if rescale=TRUE
and no formula is specified. (The final outputs are not standardized.) Other-
wise, users are responsible for standardizing their predictors.

integrator Numerical integrator used for likelihood evaluation. Can be "MonteCarlo" or
"Riemann" (IN TESTING).

error Relative numerical error threshold for the parameter estimates and log-likelihood.

max.mem Maximum amount of memory to allocate for availability sampling.

interpolate Whether or not to interpolate raster values during extraction.

trace Report progress on convergence (see Details).

verbose Returns all candidate models if TRUE. Otherwise, only the IC-best model is re-
turned.

IC Model selection criterion. Can be AIC, AICc, or BIC.

... Arguments passed to rsf.fit or optimizer.

biased A biased SDM calculated from occurrence records with non-uniform sampling
density.

bias An “SDM” calculated from data representative of the above sampling density.

unbiased An unbiased SDM or list of RSFs.

Details

Instead of specifying a number of “available” points to sample and having an unknown amount of
numerical error to contend with, rsf.fit specifies an estimation target error and the number of
“available” points is increased until this target is met. Moreover, the output log-likelihood is that of
the continuous Poisson point process, which does not depend on the number of “available” points
that were sampled, though the numerical variance estimate is recorded in the VAR.loglike slot of
the fit object.

When trace=TRUE, a number of convergence estimates are reported, including the standard devia-
tion of the numerical error of the log-likelihood, SD[log(ℓ)], the most recent log-likelihood update,
dlog(ℓ), and the most recent (relative) parameter estimate updates dβ̂/SD[β̂].

The formula object determines log(λ) and can reference static rasters in R, time-dependent raster
stacks in R [NOT TESTED], and time-dependent effect modifiers in the columns of data, such as
provided by annotate. Any offset terms are applied under a log transformation (or multiplica-
tively to λ), and can be used to enforce hard boundaries, where offset(raster)=TRUE denotes
accesible points and offset(raster)=FALSE denotes inaccessible points [NOT TESTED]. Inter-
cept terms are ignored, as they generally do not make sense for individual Poisson point process
models. This includes terms only involving the columns of data, as they lack spatial dependence.

Categorical raster variables are expanded into indicator variables, according to the reference cat-
egory argument. Upon import via raster, categorical variables may need to be assigned with
as.factor, or else they may be interpreted as numerical variables.
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Note

It is much faster to calculate all predictors ahead of time and specifying them in the R list than to
reference then in the formula argument, which will calculate them as needed, saving memory.

AIC and BIC values for integrated=FALSE models do not include any penalty for the estimated
location and shape of the available area, and so their AIC and BIC values are expected to be worse
than reported.

Author(s)

C. H. Fleming

References

J. M. Alston, C. H. Fleming, R. Kays, J. P. Streicher, C. T. Downs, T. Ramesh, B. Reineking,
& J. M. Calabrese, “Mitigating pseudoreplication and bias in resource selection functions with
autocorrelation-informed weighting”, Methods in Ecology and Evolution 14:2 643–654 (2023)
doi:10.1111/2041210X.14025.

See Also

rsf.fit, optimizer, summary.ctmm.

select Spatial selection methods for telemetry objects.

Description

Methods to segment or subset telemety objects based on polygon lasso, rectangular marquee, and
time slider selectors.

Usage

lasso(object,...)

marquee(object,...)

cleave(object,fraction=0.5,name="CLEFT",...)

Arguments

object telemetry object or list of such objects.

fraction Initial split, as fraction of total time period.

name Name of list to store cleft telemetry objects to.

... Additional arguments passed to plot.

https://doi.org/10.1111/2041-210X.14025
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Details

lasso and marquee allow the user to subset telemetry data into two groups (interior and exterior),
based on a hand-drawn polygon lasso or rectangular marquee. cleave allows the user to split the
data into two halves at a particular time selected via slider.

Value

lasso and marquee return a named list telemetry objects, twice the length of the input object,
where the first half are the interior subsets and the second half are the exterior subsets. cleave
stores a similar list of telemetry objects to name on button press.

Author(s)

C. H. Fleming.

See Also

plot.telemetry

Examples

# This example is interactive
if(interactive())
{

# Load package and data
library(ctmm)
data(wolf)

# Extract wolf Luna
DATA <- wolf$Luna

# Select resident data
SUB <- lasso(DATA)

# You can now work with the resident and dispersive data separately
names(SUB)

}

simulate.ctmm Predict or simulate from a continuous-time movement model

Description

Given a ctmm movement model (and optional telemetry data to condition upon) these functions
predict or simulate animal locations over a prescribed set of times.
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Usage

predict(object,...)

## S3 method for class 'ctmm'
predict(object,data=NULL,VMM=NULL,t=NULL,dt=NULL,res=1,complete=FALSE,...)

## S3 method for class 'telemetry'
predict(object,CTMM=NULL,VMM=NULL,t=NULL,dt=NULL,res=1,complete=FALSE,...)

simulate(object,nsim=1,seed=NULL,...)

## S3 method for class 'ctmm'
simulate(object,nsim=1,seed=NULL,data=NULL,VMM=NULL,t=NULL,dt=NULL,res=1,complete=FALSE,

precompute=FALSE,...)

## S3 method for class 'telemetry'
simulate(object,nsim=1,seed=NULL,CTMM=NULL,VMM=NULL,t=NULL,dt=NULL,res=1,complete=FALSE,

precompute=FALSE,...)

Arguments

object A ctmm movement-model or telemetry object, which requires an additional
CTMM argument.

data Optional telemetry object on which the prediction or simulation will be condi-
tioned.

CTMM A ctmm movement model in the same format as the output of ctmm.fit or
variogram.fit.

VMM An optional vertical ctmm movement model for 3D predictions and simulations.

t Optional array of numeric time values over which the process will be predicted
or simulated.

dt Timestep to space the prediction or simulation over if data is specified.

res Average number of locations to predict or simulate per data time.

complete Additionally calculate timestamps and geographic coordinates.

nsim Generates a list of nsim simulations.

seed Optional random seed to fix.

precompute Precalculate matrices of the Kalman filter (see details).

... Unused options.

Details

The prediction or simulation necessarily requires a ctmm model object. If a telemetry data object
is supplied, the output will be conditional on the data (i.e., simulations that run through the data). If
no data is provided then the output will be purely Gaussian, and times t must be provided. Details
of the movement model parameters can be found in ctmm.fit.
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The t argument fixes the output times to a specific array of times. The dt and res arguments are
relative to the sampling schedule present in the optional telemetry object. The same span of time
will be used, while dt will fix the sampling rate absolutely and res will fix the sampling rate relative
to that of the data.

The precompute option can speed up calculations of multiple simulations of the same model, data,
and irregular sampling schedule. First run simulate with precompute=TRUE to calculate and store
all of the necessary matrices of the Kalman filter. A simulated telemetry object will be produced,
as usual, and the precomputed objects are stored in the environment. Subsequent simulations with
precompute=-1 will then apply these precomputed matrices for a computational cost savings. If
the sampling schedule is irregular, then this can result in faster simulations.

Value

A simulated animal-tracking telemetry object with components t, x, and y, or a predicted telemetry
object that also includes x-y covariances for the location point estimates x and y.

Note

Predictions are autocorrelated and should not be treated as data.

Author(s)

C. H. Fleming.

References

C. H. Fleming, J. M. Calabrese, T. Mueller, K.A. Olson, P. Leimgruber, W. F. Fagan, “From fine-
scale foraging to home ranges: A semi-variance approach to identifying movement modes across
spatiotemporal scales”, The American Naturalist, 183:5, E154-E167 (2014) doi:10.1086/675504.

C. H. Fleming, D. Sheldon, E. Gurarie, W. F. Fagan, S. LaPoint, J. M. Calabrese, “Kálmán fil-
ters for continuous-time movement models”, Ecological Informatics, 40, 8-21 (2017) doi:10.1016/
j.ecoinf.2017.04.008.

See Also

ctmm.fit

Examples

#Load package
library(ctmm)

#prepare simulation parameters
t <- 1:1000
MODEL <- ctmm(tau=c(100,10),sigma=10,mu=c(0,0))

#simulate data
SIM <- simulate(MODEL,t=t)

#plot data with Gaussian model

https://doi.org/10.1086/675504
https://doi.org/10.1016/j.ecoinf.2017.04.008
https://doi.org/10.1016/j.ecoinf.2017.04.008


speed 79

plot(SIM,CTMM=MODEL)

speed Estimate the average speed of a tracked animal

Description

Given a ctmm movement model and telemetry data, speed simulates multiple realizations of the
individual’s trajectory to estimate the time-averaged speed, which is proportional to distance trav-
eled, while speeds estimates instantaneous speeds at a specified array of times t. Both tortuosity
(non straight-line motion between the data) and telemetry error can be accounted for. Given only
a ctmm movement model and no data, speed calculates the mean speed of the Gaussian movement
process. All methods are described in Noonan & Fleming et al (2019).

Usage

speed(object,...)

## S3 method for class 'ctmm'
speed(object,data=NULL,t=NULL,level=0.95,robust=FALSE,units=TRUE,prior=TRUE,fast=TRUE,

cor.min=0.5,dt.max=NULL,error=0.01,cores=1,trace=TRUE,...)

## S3 method for class 'telemetry'
speed(object,CTMM,t=NULL,level=0.95,robust=FALSE,units=TRUE,prior=TRUE,fast=TRUE,

cor.min=0.5,dt.max=NULL,error=0.01,cores=1,trace=TRUE,...)

speeds(object,...)

## S3 method for class 'ctmm'
speeds(object,data=NULL,t=NULL,cycle=Inf,level=0.95,robust=FALSE,prior=FALSE,fast=TRUE,

error=0.01,cores=1,trace=TRUE,...)

## S3 method for class 'telemetry'
speeds(object,CTMM,t=NULL,cycle=Inf,level=0.95,robust=FALSE,prior=FALSE,fast=TRUE,

error=0.01,cores=1,trace=TRUE,...)

Arguments

object A ctmm movement-model or telemetry object, which requires an additional
CTMM argument.

data Optional telemetry object on which the simulations will be conditioned.

CTMM Movement model object.

t Array of times to estimate instantaneous speeds at, or range of times to estimate
mean speed over.

cycle Average over time t indices modulo cycle. E.g., for t sequenced by hours,
cycle=24 gives daily the cycle of speeds. (Not yet supported.)
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level Confidence level to report on the estimated average speed.
robust Use robust statistics for the ensemble average and its confidence intervals (see

Details).
units Convert result to natural units.
prior Account for model parameter uncertainty.
fast Whether or not to invoke the central-limit theorem when propagating parameter

uncertainty (see emulate).
cor.min Velocity correlation threshold for skipping gaps.
dt.max Absolute gap sizes to skip (in seconds), alternative to cor.min.
error Target (relative) standard error.
cores Number of simulations to run in parallel. cores=0 will use all cores, while

cores<0 will reserve abs(cores).
trace Display a progress bar.
... Arguments passed to emulate.

Details

The cor.min or dt.max arguments are used to constrain the estimate to be derived from simulations
near the data, and therefore ensure that the estimate is more reflective of the data than the model.

If data quality is poor and velocity can barely be resolved, then the sampling distribution may
occassionally include impersistent motion and its mean will be infinite. In these cases robust=TRUE
can be used to report the sampling distribution’s median rather than its mean. The time average of
speed, in either case, is still the mean average of times and the resulting quantity is still proportional
to distance traveled. Furthermore, note that medians should be compared to medians and means to
means, so the robust option should be the same for all compared individuals.

Value

Returns the estimated mean speed of the sampled trajectory with CIs by default. The DOF slot
corresponds to a scaled-χ sampling distribution. If level=NULL, then the ensemble of mean speeds
is returned instead.

Note

The mean speed estimated by speed is applicable only during the sampling periods. If an individual
is diurnal/nocturnal and only tracked during the day/night, then the output of speed will only be
the mean speed during the day/night. For instance, if an individual is tracked the 12 hours per day
during which it is active, and speed reports a mean speed of 10 kilometers per day during those
periods, then the average distance traveled per day is only 5 kilometers (from 10 kilometers / day *
12 hours). An average of 10 kilometers would only result if the individual were similarly active for
24 hours a day.

The average speeds estimated here are mean speeds. The speeds reported by summary.ctmm are
root-mean-square (RMS) speeds. These quantities are sometimes proportional, but not equivalent.

Author(s)

C. H. Fleming.
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References

M. J. Noonan, C. H. Fleming, T. S. Akre, J. Drescher-Lehman, E. Gurarie, A.-L. Harrison, R. Kays,
Justin Calabrese, “Scale-insensitive estimation of speed and distance traveled from animal tracking
data”, Movement Ecology, 7:35 (2019).

See Also

emulate, simulate

Examples

# Load package and data
library(ctmm)
data(buffalo)
DATA <- buffalo$Gabs

GUESS <- ctmm.guess(DATA,interactive=FALSE)
# in general, you should use ctmm.select instead
FIT <- ctmm.fit(DATA,GUESS)

# stationary Gaussian estimate
speed(FIT)

# conditional estimate
# you will likely want trace=TRUE
speed(FIT,DATA,trace=FALSE)

summary.ctmm Summarize a continuous-time movement model

Description

This function returns a list of biologically interesting parameters in human readable format, as
derived from a continuous-time movement model.

Usage

## S3 method for class 'ctmm'
summary(object,level=0.95,level.UD=0.95,units=TRUE,IC=NULL,MSPE=NULL,...)

Arguments

object A ctmm movement-model object from the output of ctmm.fit.

level Confidence level for parameter estimates.

level.UD Coverage level for the Gaussian home-range area.

units Convert result to natural units.

https://movementecologyjournal.biomedcentral.com/articles/10.1186/s40462-019-0177-1
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IC Information criteria for sorting lists of ctmm objects. Can be "AICc", "AIC",
"BIC", "LOOCV", "HSCV", or none (NA). AICc is approximate.

MSPE Sort models with the same autocovariance structure by the mean square predic-
tive error of "position", "velocity", or not (NA).

... Unused options.

Value

If summary is called with a single ctmm object output from ctmm.fit, then a list is returned with
the effective sample sizes of various parameter estimates (DOF) and a parameter estimate table CI,
with low, point, and high estimates for the following possible parameters:

tau The autocorrelation timescales. tau position is also the home-range crossing timescale.

area The Gaussian home-range area, where the point estimate has a significance level of level.UD.
I.e., the core home range is where the animal is located 50% of the time with level.UD=0.50.
This point estimate itself is subject to uncertainty, and is given confidence intervals derived
from level. This Gaussian estimate differs from the kernel density estimate of summary.UD.
The Gaussian estimate has more statistical efficiency, but is less related to space use for non-
Gaussian processes.

speed The Gaussian root-mean-square (RMS) velocity, which is a convenient measure of average
speed but not the conventional measure of average speed (see speed).

Furthermore, if summary is called on a population-level model, then population-level standard de-
viations (SD) and coefficients of variation (CoV) are also returned.

If summary is called on a list of ctmm objects output from ctmm.select, then a table is returned
with the model names and IC differences for comparison across autocovariance structures. The
mean square prediction error (MSPE) is also returned for comparison across trend structures (with
autocovariance structure fixed). For the model names, "IID" denotes the uncorrelated bi-variate
Gaussian model, "OU" denotes the continuous-position Ornstein-Uhlenbeck model, "OUF" denotes
the continuous-velocity Ornstein-Uhlenbeck-F model, "OUf" denotes the OUF model where the
two autocorrelation timescales cannot be statistically distinguished.

Note

Confidence intervals on the autocorrelation timescales assume they are sufficiently greater than zero
and less than infinity.

IC="LOOCV" can only be attempted if also specified during ctmm.select, as this argument requires
additional calculations.

Prior to ctmm v0.6.2, timescale confidence intervals were constructed from normal and inverse-
normal sampling distributions, whereas v0.6.2 onward uses gamma and inverse-gamma sampling
distributions.

In ctmm v0.5.1 onward the MSPE is averaged over all possible times instead of over all sampled
times.

In ctmm v0.3.4 the speed estimate was fixed to be the RMS velocity and not 1/
√
2 times the RMS

velocity.
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Author(s)

C. H. Fleming.

See Also

ctmm.fit, ctmm.select.

Examples

# Load package and data
library(ctmm)
data(buffalo)

# Extract movement data for a single animal
DATA <- buffalo$Cilla

# fit model
GUESS <- ctmm.guess(DATA,interactive=FALSE)
FIT <- ctmm.fit(DATA,GUESS)

# Tell us something interpretable
summary(FIT)

summary.UD Summarize a range distribution

Description

This function returns a list of biologically interesting parameters in human readable format, as
derived from an autocorrelated kernel density estimate.

Usage

## S3 method for class 'UD'
summary(object,convex=FALSE,level=0.95,level.UD=0.95,units=TRUE,...)

Arguments

object An akde autocorrelated kernel-density estimate from the output of akde.

convex Report convex coverage areas if TRUE. By default, the highest density regions
(HDRs) are reported.

level Confidence level for the above area estimate. E.g., the 95% confidence interval
of the 50% core area.

level.UD Coverage level for the home-range area. E.g., the 50% core area.

units Convert result to natural units.

... Unused options.
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Value

A list is returned with the effective sample sizes of various parameter estimates (DOF) and a param-
eter estimate table CI, with low, point, and high estimates for the following possible parameters:

area The home-range area with fraction of inclusion level.UD. E.g., the 50% core home range is
estimated with level.UD=0.50, and 95% confidence intervals are placed on that area estimate
with level=0.95.
This kernel density estimate differs from the Gaussian estimate of summary.ctmm. The Gaus-
sian estimate has more statistical efficiency, but is less related to space use for non-Gaussian
processes.

Note

Prior to ctmm v0.3.1, AKDEs included only errors due to autocorrelation uncertainty, which are
insignificant in cases such as IID data. Starting in v0.3.1, akde calculated an effective sample
size DOF.H and used this to estimate area uncertainty under a chi-square approxmation. Starting in
v0.3.2, this method was improved to use DOF.area in the Gaussian reference function approxima-
tion.

Author(s)

C. H. Fleming.

References

C. H. Fleming, J. M. Calabrese. A new kernel-density estimator for accurate home-range and
species-range area estimation. Methods in Ecology and Evolution, 8:5, 571-579 (2016) doi:10.1111/
2041210X.12673.

See Also

akde.

Examples

# Load package and data
library(ctmm)
data(buffalo)

# Extract movement data for a single animal
DATA <- buffalo$Cilla

# Fit a movement model
GUESS <- ctmm.guess(DATA,interactive=FALSE)
FIT <- ctmm.fit(DATA,GUESS)

# Estimate and summarize the AKDE
UD <- akde(DATA,FIT)
summary(UD)

https://doi.org/10.1111/2041-210X.12673
https://doi.org/10.1111/2041-210X.12673
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transition Make a sequence of transition slide figures

Description

This function generates a time-ordered sequence of transition slide images from a single tracking
dataset.

Usage

transition(data,n=3,filename="transition",height=2160,...)

Arguments

data A telemetry object.

n The desired number of slides to create.

filename The base filename of the generated figures.

height .

... Additional arguments passed to plot.telemetry.

Details

transition partitions the tracking data into n equal-time segments, which are plotted with color
on the nth slides. These are intended to be used in transition slides between n indexed presentation
topics.

Value

Generates n+1 PNG files as a side effect.

Note

Currently, there is a black border that needs to be removed, such as with the LaTeX code: \includegraphics[height=0.9\textheight,trim={3
3 3 3},clip]{transition-1.6.png}

Author(s)

C. H. Fleming.

See Also

plot.telemetry
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turtle Wood turtle GPS and calibration dataset from Working Land and
Seascapes.

Description

x-y projected GPS data from 2 calibration runs and 2 wood turtles. Please contact Tom Akre
(akret@si.edu) if you want to publish with these data.

Usage

data("turtle")

Format

A list of 4 telemetry objects.

See Also

as.telemetry, plot.telemetry, uere, buffalo, coati, gazelle, jaguar, pelican, wolf.

Examples

# Load package and data
library(ctmm)
data("turtle")

# Plot a turtle's locations
plot(turtle[[3]])

uere Estimate RMS UERE from calibration data

Description

Functions for estimating and assigning the root-mean-square User Equivalent Range Error (UERE)
of a GPS device from calibration data.

Usage

uere(data)

uere(data) <- value

uere.fit(data,precision=1/2)

## S3 method for class 'UERE'
summary(object,level=0.95,...)
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Arguments

data telemetry object or list of telemetry objects, preferably with DOP columns.

value RMS UERE value(s) to assign to telemetry data (see details).

precision Fraction of maximum possible digits of precision to target in categorical error
fitting. precision=1/2 results in about 7 decimal digits of precision.

object UERE object to summarize or list of UERE objects to compare.

level Confidence level for UERE estimate confidence intervals.

... Further arguments are ignored.

Details

Often times GPS animal tracking devices return HDOP values but do not specifiy the device’s RMS
UERE necessary to transform the HDOP values into absolute errors. uere.fit() allows users
to estimate the RMS UERE from calibration data, where the device was left fixed over a period
of time. The calibration RMS UERE can then be applied to tracking data with the uere()<- as-
signment method. Otherwise, when error=TRUE in ctmm, ctmm.fit will estimate the RMS UERE
simultaneously with the movement model, which is less reliable than using calibration data.

summary() applied to single UERE object will return RMS UERE parameter estimates and confi-
dence intervals in meters, while summary() applied to a list of UERE objects will return a model-
selection table, with AICc and reduced Z squared (goodness of fit) values.

Value

The RMS UERE estimate.

Note

The GPS device should be fixed during calibraiton.

Author(s)

C. H. Fleming

References

C. H. Fleming et al, “A comprehensive framework for handling location error in animal tracking
data”, bioRxiv 2020.06.12.130195 (2020) doi:10.1101/2020.06.12.130195.

See Also

as.telemetry, residuals.telemetry.

https://doi.org/10.1101/2020.06.12.130195
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Examples

# Load package and data
library(ctmm)
data(turtle)

# the first two datasets are calibration data
names(turtle)

# estimate RMS UERE from calibration data
UERE <- uere.fit(turtle[1:2])
# inspect UERE estimate
summary(UERE)

# assign RMS UERE to entire dataset
uere(turtle) <- UERE

# calculate residuals of calibration data
RES <- lapply(turtle[1:2],residuals)

# scatter plot of residuals with 50%, 95%, and 99.9% coverage areas
plot(RES,col.DF=NA,level.UD=c(0.50,0.95,0.999))

# check calibration data for autocorrelation using fast=FALSE because samples are small
ACFS <- lapply(RES,function(R){correlogram(R,fast=FALSE,dt=10 %#% 'min',trace=FALSE)})

# pooling ACFs
ACF <- mean(ACFS)

plot(ACF)

Unit conversion Convert dimensionful quantities to and from SI units

Description

This function takes a number in some specified units and converts that number to SI units, or from
SI units to the specified units. Internally, all ctmm objects are specified in SI units, and so this is a
utility function to facilitate working with ctmm objects.

Usage

x %#% y

Arguments

x A numeric quantity specified in y character labeled units, or a character unit
label to convert a numeric quantity y that is specified in SI units.

y A unit character label for the quantity x to be converted to SI units, or a numeric
quantity in SI units to be converted into unit label x.
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Details

If x is a number and y is a character unit label, then x is converted from units y to SI units. If x is a
character unit label and y is a number, then y is converted from SI units to units x.

The default non-SI units include the mean solar 'day', mean synodic 'month' and mean tropical
'year'. These defaults can be changed to conventional calendar units via options(time.units='calendar').

Value

Returns a numeric in SI units or units specified by character label x.

Author(s)

C. H. Fleming.

See Also

unit

Examples

# one yard -> meters
1 %#% "yard"

# one meter -> yards
"yard" %#% 1

# 1 month -> days
"day" %#% 1 %#% "month"

# 6 miles per hour -> meters per second
"hour" %#% 6 %#% "mile"

# the same conversion in one step
6 %#% "mph"

variogram Calculate an empirical variogram from movement data

Description

This function calculates the empirical variogram of multi-dimensional tracking data for visualizing
stationary (time-averaged) autocorrelation structure. One of two algorithms is used. The slow
O(n2) algorithm is based upon Fleming & Calabrese et al (2014), but with interval-weights instead
of lag-weights and an iterative algorithm to adjust for calibrated errors. Additional modifications
have also been included to accommodate drift in the sampling rate. The fast O(n log n) algorithm
is based upon the FFT method of Marcotte (1996), with some tweaks to better handle irregularly
sampled data. Both methods reduce to the unbiased “method of moments” estimator in the case of
evenly scheduled data, even with missing observations, but they produce slightly different outputs
for irregularly sampled data.
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Usage

variogram(data,dt=NULL,fast=TRUE,res=1,CI="Markov",error=FALSE,axes=c("x","y"),
precision=1/8,trace=TRUE)

Arguments

data telemetry data object of the 2D timeseries data.

dt Lag bin width. An ordered array will yield a progressive coarsening of the lags.
Defaults to the median sampling interval.

fast Use the interval-weighted algorithm if FALSE or the FFT algorithm if TRUE. The
slow algorithm outputs a progress bar.

res Increase the discretization resolution for irregularly sampled data with res>1.
Decreases bias at the cost of smoothness.

CI Argument for confidence-interval estimation. Can be "IID" to consider all
unique lags as independent, "Markov" to consider only non-overlapping lags
as independent, or "Gauss" for an exact calculation (see Details below).

error Adjust for the effect of calibrated errors.

axes Array of axes to calculate an average (isotropic) variogram for.

precision Fraction of machine precision to target when adjusting for telemetry error (fast=FALSE
with calibrated errors). precision=1/8 returns about 2 decimal digits of preci-
sion.

trace Display a progress bar if fast=FALSE.

Details

If no dt is specified, the median sampling interval is used. This is typically a good assumption
for most data, even when there are gaps. A dt coarser than the sampling interval may bias the
variogram (particuarly if fast=TRUE) and so this should be reserved for poor data quality.

For irregularly sampled data, it may be useful to provide an array of time-lag bin widths to pro-
gressively coarsen the variogram. I.e., if you made the very bad choice of changing your sam-
pling interval on the fly from dt1 to dt2, where dt1 < dt2, the an appropriate choice would be
dt=c(dt1,dt2). On the other hand, if your sampling is itself a noisy process, then you might want
to introduce larger and larger dt components as the visual appearance of the variogram breaks down
with increasing lags. Alternatively, you might try the fast=FALSE option or aggregating multiple
individuals with mean.variogram.

With irregularly sampled data, different size lags must be aggregated together, and with current fast
methods there is a tradeoff between bias and smoothness. The default settings produce a relatively
smooth estimate, while increasing res (or setting fast=FALSE) will produce a less biased estimate,
which is very useful for correlogram.

In conventional variogram regression treatments, all lags are considered as independent (CI="IID")
for the purposes of confidence-interval estimation, even if they overlap in time. However, in high
resolution datasets this will produce vastly underestimated confidence intervals. Therefore, the
default CI="Markov" behavior is to consider only the maximum number of non-overlapping lags in
calculating confidence intervals, though this is a crude approximation and is overly conservative at
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large lags. CI="Gauss" implements exact confidence intervals under the assumption of a stationary
Gaussian process, but this algorithm is O(n2 log n) even when fast=TRUE.

If fast=FALSE and the tracking data are calibrated (see uere), then with error=TRUE the vari-
ogram of the movement process (sans the telemetry-error process) is estimated using an iterative
maximum-likelihood esitmator that downweights more erroneous location estimates (Fleming et al,
2020). The variogram is targeted to have precision fraction of machine precision. If the data are
very irregular and location errors are very homoskedastic, then this algorithm can be slow to con-
verge at time lags where there are few data pairs. If fast=TRUE and error=TRUE, then the estimated
contribution to the variogram from location error is subtracted on a per lag basis, which is less ideal
for heteroskedastic errors.

Value

Returns a variogram object (class variogram) which is a dataframe containing the time-lag, lag,
the semi-variance estimate at that lag, SVF, and the approximate number of degrees of freedom
associated with that semi-variance, DOF, with which its confidence intervals can be estimated.

Note

Prior to ctmm v0.3.6, fast=FALSE used the lag-weighted esitmator of Fleming et al (2014). Lag
weights have been abandoned in favor of interval weights, which are less sensitive to sampling
irregularity. The same weighting formulas are used, but with dt instead of the current lag.

Author(s)

C. H. Fleming and J. M. Calabrese.

References

D. Marcotte, “Fast variogram computation with FFT”, Computers and Geosciences 22:10, 1175-
1186 (1996) doi:10.1016/S00983004(96)00026X.

C. H. Fleming, J. M. Calabrese, T. Mueller, K.A. Olson, P. Leimgruber, W. F. Fagan, “From fine-
scale foraging to home ranges: A semi-variance approach to identifying movement modes across
spatiotemporal scales”, The American Naturalist, 183:5, E154-E167 (2014) doi:10.1086/675504.

C. H. Fleming et al, “A comprehensive framework for handling location error in animal tracking
data”, bioRxiv (2020) doi:10.1101/2020.06.12.130195.

See Also

vignette("variogram"), correlogram, mean.variogram, plot.variogram, variogram.fit.

Examples

#Load package and data
library(ctmm)
data(buffalo)

#Extract movement data for a single animal
DATA <- buffalo$Cilla

https://doi.org/10.1016/S0098-3004%2896%2900026-X
https://doi.org/10.1086/675504
https://doi.org/10.1101/2020.06.12.130195
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#Calculate variogram
SVF <- variogram(DATA)

#Plot the variogram with 50% and 95% CIs
plot(SVF,level=c(0.5,0.95))

variogram.fit Visually fit a movement model to a variogram

Description

This function plots a variogram object overlayed with a continuous-time movement model guessti-
mated from the variogram’s shape. Sliders are given to adjust the parameter guesstimates and the
result can be saved to a global variable. The intention of this function is to facilitate good start-
ing guesses for ctmm.fit, starting with a prototype hypothesis argument CTMM, which can contain
features such as isotropic, range, circle, etc..

Usage

ctmm.guess(data,CTMM=ctmm(),variogram=NULL,name="GUESS",interactive=TRUE)

variogram.fit(variogram,CTMM=ctmm(),name="GUESS",fraction=0.5,interactive=TRUE,...)

Arguments

data A telemetry object.
CTMM Optional model prototype or initial guesstimate of the model parameters, in ctmm

object format.
name Name of the global variable to store the guesstimate in.
interactive Boolean denoting whether to render the initial guess with interactive sliders or

store the result silently.
variogram A variogram object from the output of variogram.
fraction Initial fraction of the variogram to render.
... Optional parameters passed to plot.variogram.

Details

By default, sigma is the asymptote of the variogram and tau is an array of autocorrelation timescales.
The position timescale is roughly the time lag it takes of the variogram to reach 63% of its asymp-
tote. The velocity autocorrelation timescale visually corresponds to width of the concave bowl
shape at the beginning of the variogram. If CTMM=ctmm(range=FALSE), sigma is the asymptotic
slope of the variogram and only the velocity timescale is finite.

By default, parameter values are estimated from the shape of the variogram. If this fails, the CTMM
option can provide alternative initial guesstimates.

variogram.fit is called by ctmm.guess, and there is usually no reason to call variogram.fit
directly.
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Note

If the manipulate package is unavailable, then interactive is set to FALSE.

Author(s)

C. H. Fleming.

See Also

ctmm.fit, plot.variogram, variogram.

Examples

#Load package and data
library(ctmm)
data(buffalo)

#Extract movement data for a single animal
DATA <- buffalo$Cilla

# generate a visual fit of the variogram (requires RStudio or a guess object is returned)
ctmm.guess(DATA)

video Video record animated telemetry objects.

Description

Produces an MP4 video file by animating telemetry objects.

Usage

video(x,ext=extent(x),fps=60,dt=NULL,ghost=0,timestamp=FALSE,file="ctmm.mp4",res=720,
col="red",pch=1,cex=NULL,lwd=1,par.list=list(),...)

Arguments

x telemetry object or list of telemetry objects.

ext Plot extent for all frames.

fps Frames per viewed second.

dt Tracked time per frame (not per viewed second). By default, the median timestep
will be used.

ghost Timescale over which image retention (ghosting) decays.

timestamp Display timestamps on title.

file File name for MP4 file to save. The full path can also be specified. Otherwise
the working directory will be used.
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res Pixel resolution for square videos or pixel c(width,height) for rectangular
videos.

col Color option for telemetry data. Can be an array or list of arrays.

pch Plotting symbol. Can be an array or list of arrays.

cex Relative size of plotting symbols. Only used when errors are missing.

lwd Line widths of telemetry points.

par.list List of additional arguments passed to par within animate that do not work
outside of animate, like mar.

... Additional options passed to plot.telemetry.

Details

This function does not interpolate locations to make smooth animations. For that, please use
predict or simulate outputs instead of a raw tracking data.

Value

Saves an MP4 file named file to the working directory.

Note

Further animation and ffmpeg options can be set via ani.options.

Author(s)

C. H. Fleming.

See Also

plot, plot.telemetry, ani.options

Examples

# Load package and data
library(ctmm)
data(coati)

# temporary file to store videos for CRAN compliance
FILE <- tempfile("ctmm",fileext=".mp4")
# you will likely want to save your video elsewhere
# the working directory is the default location

# create guess object
GUESS <- ctmm.guess(coati[[2]],interactive=FALSE)
# in general, use ctmm.select instead of ctmm.fit
FIT <- ctmm.fit(coati[[2]],GUESS)

# consider a few hours of consecutive sampling, at 1 minute per frame
t <- seq(coati[[2]]$t[19],coati[[2]]$t[27],by=60)
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# tau[velocity] is a natural scale to demonstrate persistance of motion
ghost <- FIT$tau[2]

# predicted locations each minute
PRED <- predict(coati[[2]],FIT,t=t)

# most likely path
video(PRED,error=FALSE,pch=16,ghost=ghost,file=FILE)

# prediction (distribution)
video(PRED,error=3,file=FILE)

# conditional simulations
SIMS <- lapply(1:6,function(i){simulate(coati[[2]],FIT,t=t)})

# random paths
video(SIMS,pch=16,ghost=ghost,file=FILE)

wolf Maned wolf GPS dataset from The Maned Wolf Conservation Pro-
gram.

Description

x-y projected GPS data on 8 Maned wolves. Please contact Rogerio Cunha de Paula (roger-
cunha@gmail.com) if you want to publish with these data.

Usage

data("wolf")

Format

A list of 8 telemetry objects.

See Also

as.telemetry, plot.telemetry, buffalo, coati, gazelle, pelican, turtle.

Examples

# Load package and data
library(ctmm)
data("wolf")

# Plot a wolf's locations
plot(wolf[[8]])
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lasso (select), 75
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65
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65
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(projection), 65
proximity (difference), 26
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raster, 72, 74
raster,UD-method (export), 33
rasterOptions, 34
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res, 7
residuals (residuals.ctmm), 67
residuals.ctmm, 67
residuals.telemetry, 87
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rsf.fit, 39, 41, 71, 75
rsf.select (rsf.fit), 71

sdm.fit, 73
sdm.integrate (sdm.fit), 73
sdm.select (sdm.fit), 73
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sigfig (format), 36
simulate, 81, 94
simulate (simulate.ctmm), 76
simulate.ctmm, 31, 76
SpatialPoints.telemetry, 10, 63
SpatialPoints.telemetry (export), 33
SpatialPointsDataFrame.telemetry

(export), 33
SpatialPolygonsDataFrame.telemetry

(export), 33
SpatialPolygonsDataFrame.UD (export), 33
speed, 46, 55, 79, 82
speeds (speed), 79
strptime, 9, 10
suitability, 62
suitability (homerange), 39
summary.ctmm, 22, 73, 75, 80, 81, 84
summary.telemetry (as.telemetry), 8
summary.UD, 82, 83
summary.UERE (uere), 86

tail (as.telemetry), 8
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tbind (as.telemetry), 8
text, 66
transition, 85
turtle, 13, 16, 38, 41, 59, 86, 95

uere, 10, 86, 86, 91
uere<- (uere), 86
unit, 89
Unit conversion, 88

variogram, 45, 64, 65, 69, 89, 93
variogram.fit, 22, 65, 77, 91, 92
video, 93

wolf, 13, 16, 38, 41, 59, 86, 95
writeFormats, 34
writeRaster, 34
writeRaster,UD,character-method

(export), 33
writeVector, 34
writeVector (export), 33
writeVector,list,character-method

(export), 33
writeVector,list,missing-method

(export), 33
writeVector,telemetry,character-method

(export), 33
writeVector,telemetry,missing-method

(export), 33
writeVector,UD,character-method

(export), 33
writeVector,UD,missing-method (export),

33

zoom, 24
zoom,list-method (plot.telemetry), 61
zoom,telemetry-method (plot.telemetry),

61
zoom,UD-method (plot.telemetry), 61
zoom,variogram-method (plot.variogram),
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